Nuprl Lemma : not-proj-point-sep-is-equiv

e:EuclideanParPlane
  ((∀l,m:Line.  (l \/  (∀n:Line. (l \/ n ∨ \/ n))))  EquivRel(Point Line;p,q.¬proj-point-sep(e;p;q)))


Proof




Definitions occuring in Statement :  proj-point-sep: proj-point-sep(eu;p;q) euclidean-parallel-plane: EuclideanParPlane geo-intersect: \/ M geo-line: Line geo-point: Point equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q union: left right
Definitions unfolded in proof :  or: P ∨ Q so_apply: x[s] euclidean-parallel-plane: EuclideanParPlane so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} trans: Trans(T;x,y.E[x; y]) prop: false: False not: ¬A sym: Sym(T;x,y.E[x; y]) cand: c∧ B subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T refl: Refl(T;x,y.E[x; y]) and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y]) implies:  Q all: x:A. B[x]
Lemmas referenced :  proj-point-sep-cotrans proj-point-sep-symmetry or_wf geoline-subtype1 geo-intersect_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf euclidean-parallel-plane_wf subtype_rel_transitivity euclidean-planes-subtype euclidean-plane-subtype euclidean-plane-structure-subtype all_wf not_wf proj-point-sep_wf geo-line_wf geo-point_wf proj-point-sep-irrefl
Rules used in proof :  unionElimination rename setElimination functionEquality lambdaEquality independent_isectElimination instantiate voidElimination independent_functionElimination sqequalRule because_Cache applyEquality isectElimination unionEquality hypothesis hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanParPlane
    ((\mforall{}l,m:Line.    (l  \mbackslash{}/  m  {}\mRightarrow{}  (\mforall{}n:Line.  (l  \mbackslash{}/  n  \mvee{}  m  \mbackslash{}/  n))))
    {}\mRightarrow{}  EquivRel(Point  +  Line;p,q.\mneg{}proj-point-sep(e;p;q)))



Date html generated: 2018_05_22-PM-01_14_14
Last ObjectModification: 2018_05_21-PM-02_23_51

Theory : euclidean!plane!geometry


Home Index