Nuprl Lemma : perp-col

e:BasicGeometry. ∀a,b,c,d,x,y:Point.  (a ≠  ab  ⊥cd  x ≠  Colinear(a;b;x)  Colinear(a;b;y)  cd  ⊥xy)


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B basic-geometry: BasicGeometry uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q geo-perp-in: ab  ⊥cd implies:  Q all: x:A. B[x] cand: c∧ B subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) so_apply: x[s1;s2;s3] top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs so_apply: x[s] so_lambda: λ2x.t[x] or: P ∨ Q rev_implies:  Q iff: ⇐⇒ Q exists: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-perp-in_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf geo-colinear_wf colinear-transitivity-2 geo-colinear-same lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma list_ind_nil_lemma list_ind_cons_lemma geo-colinear-is-colinear-set exists_wf equal_wf l_member_wf cons_member nil_wf cons_wf geo-colinear-append right-angle-symmetry
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate applyEquality hypothesis hypothesisEquality rename setElimination isectElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination dependent_functionElimination independent_pairFormation baseClosed imageMemberEquality natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality lambdaEquality productEquality inlFormation inrFormation dependent_pairFormation

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d,x,y:Point.
    (a  \mneq{}  b  {}\mRightarrow{}  ab    \mbot{}x  cd  {}\mRightarrow{}  x  \mneq{}  y  {}\mRightarrow{}  Colinear(a;b;x)  {}\mRightarrow{}  Colinear(a;b;y)  {}\mRightarrow{}  cd    \mbot{}x  xy)



Date html generated: 2017_10_02-PM-06_43_42
Last ObjectModification: 2017_08_05-PM-04_49_37

Theory : euclidean!plane!geometry


Home Index