Nuprl Lemma : pgeo-minimum-order
∀pg:ProjectivePlane. ∀n:ℕ.  (order(pg) = n 
⇒ (n ≥ 2 ))
Proof
Definitions occuring in Statement : 
pgeo-order: order(pg) = n
, 
projective-plane: ProjectivePlane
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
pgeo-order: order(pg) = n
, 
member: t ∈ T
, 
sq_exists: ∃x:A [B[x]]
, 
prop: ℙ
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
not: ¬A
, 
quotient: x,y:A//B[x; y]
, 
false: False
, 
cand: A c∧ B
, 
pgeo-peq: a ≡ b
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
respects-equality: respects-equality(S;T)
, 
inject: Inj(A;B;f)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
pgeo-non-trivial-dual, 
pgeo-order_wf, 
istype-nat, 
projective-plane_wf, 
pgeo-incident_wf, 
projective-plane-structure_subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-subtype, 
subtype_rel_transitivity, 
projective-plane-structure-complete_wf, 
projective-plane-structure_wf, 
pgeo-primitives_wf, 
pgeo-peq_wf, 
quotient_wf, 
pgeo-point_wf, 
pgeo-order-equiv_rel, 
respects-equality-quotient1, 
respects-equality-set-trivial, 
pgeo-psep_wf, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
int_seg_properties, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
istype-le, 
istype-less_than, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
pgeo-three-points-axiom, 
subtype_quotient
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
universeIsType, 
hypothesis, 
productElimination, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
independent_functionElimination, 
voidElimination, 
productIsType, 
equalityIstype, 
setIsType, 
because_Cache, 
isectElimination, 
applyEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
instantiate, 
independent_isectElimination, 
setEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
independent_pairFormation, 
addEquality, 
intEquality, 
sqequalBase, 
functionIsType
Latex:
\mforall{}pg:ProjectivePlane.  \mforall{}n:\mBbbN{}.    (order(pg)  =  n  {}\mRightarrow{}  (n  \mgeq{}  2  ))
Date html generated:
2019_10_16-PM-02_14_20
Last ObjectModification:
2018_12_13-PM-04_35_33
Theory : euclidean!plane!geometry
Home
Index