Nuprl Lemma : pgeo-minimum-order

pg:ProjectivePlane. ∀n:ℕ.  (order(pg)  (n ≥ ))


Proof




Definitions occuring in Statement :  pgeo-order: order(pg) n projective-plane: ProjectivePlane nat: ge: i ≥  all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q pgeo-order: order(pg) n member: t ∈ T sq_exists: x:A [B[x]] prop: equipollent: B exists: x:A. B[x] biject: Bij(A;B;f) and: P ∧ Q not: ¬A quotient: x,y:A//B[x; y] false: False cand: c∧ B pgeo-peq: a ≡ b uall: [x:A]. B[x] subtype_rel: A ⊆B squash: T guard: {T} uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] respects-equality: respects-equality(S;T) inject: Inj(A;B;f) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  pgeo-non-trivial-dual pgeo-order_wf istype-nat projective-plane_wf pgeo-incident_wf projective-plane-structure_subtype projective-plane-structure-complete_subtype projective-plane-subtype subtype_rel_transitivity projective-plane-structure-complete_wf projective-plane-structure_wf pgeo-primitives_wf pgeo-peq_wf quotient_wf pgeo-point_wf pgeo-order-equiv_rel respects-equality-quotient1 respects-equality-set-trivial pgeo-psep_wf nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le int_seg_properties intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma istype-le istype-less_than set_subtype_base lelt_wf int_subtype_base pgeo-three-points-axiom subtype_quotient
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality setElimination rename universeIsType hypothesis productElimination sqequalRule pertypeElimination promote_hyp independent_functionElimination voidElimination productIsType equalityIstype setIsType because_Cache isectElimination applyEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt instantiate independent_isectElimination setEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry unionElimination natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt independent_pairFormation addEquality intEquality sqequalBase functionIsType

Latex:
\mforall{}pg:ProjectivePlane.  \mforall{}n:\mBbbN{}.    (order(pg)  =  n  {}\mRightarrow{}  (n  \mgeq{}  2  ))



Date html generated: 2019_10_16-PM-02_14_20
Last ObjectModification: 2018_12_13-PM-04_35_33

Theory : euclidean!plane!geometry


Home Index