Nuprl Lemma : pgeo-triangle-dual
∀pg:ProjectivePlane. ∀t:pgeo-triangle(pg).
  ∃t*:pgeo-triangle(pg*)
   let a,b,c,s,s' = t in let lab,lbc,lca,s1,s2 = t* in a I lab ∧ b I lab ∧ b I lbc ∧ c I lbc ∧ c I lca ∧ a I lca
Proof
Definitions occuring in Statement : 
pgeo-triangle: pgeo-triangle(pg)
, 
projective-plane: ProjectivePlane
, 
pgeo-dual: pg*
, 
pgeo-incident: a I b
, 
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pgeo-triangle: pgeo-triangle(pg)
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
pgeo-lsep: l ≠ m
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
prop: ℙ
, 
pgeo-meet: l ∧ m
, 
mk-pgeo-prim: mk-pgeo-prim, 
pgeo-line: Line
, 
pgeo-point: Point
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
top: Top
, 
mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3)
, 
pgeo-dual-prim: pg*
, 
pgeo-plsep: a ≠ b
, 
pgeo-dual: pg*
, 
pgeo-join: p ∨ q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
pgeo-incident: a I b
, 
pgeo-psep: a ≠ b
, 
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e]
Lemmas referenced : 
projective-plane_wf, 
pgeo-triangle_wf, 
pgeo-psep-sym, 
plsep-join-implies, 
incident-join-first, 
projective-plane-structure-complete_subtype, 
projective-plane-subtype, 
subtype_rel_transitivity, 
projective-plane-structure-complete_wf, 
projective-plane-structure_wf, 
pgeo-plsep-cycle, 
pgeo-join-plsep-sym, 
pgeo-incident_wf, 
projective-plane-structure_subtype, 
pgeo-primitives_wf, 
pgeo-join_wf, 
pgeo-line_wf, 
pgeo-plsep_wf, 
rec_select_update_lemma, 
pgeo-meet-to-point, 
projective-plane-subtype-basic, 
incident-join-second, 
pgeo-peq_inversion, 
pgeo-meet_wf, 
pgeo-plsep_functionality, 
pgeo-leq_weakening, 
pgeo-lsep_wf, 
pgeo-point_wf
Rules used in proof : 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
rename, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination, 
dependent_pairFormation, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
productEquality, 
lambdaEquality, 
setElimination, 
setEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_pairEquality
Latex:
\mforall{}pg:ProjectivePlane.  \mforall{}t:pgeo-triangle(pg).
    \mexists{}t*:pgeo-triangle(pg*)
      let  a,b,c,s,s'  =  t  in  let  lab,lbc,lca,s1,s2  =  t*  in  a  I  lab
      \mwedge{}  b  I  lab
      \mwedge{}  b  I  lbc
      \mwedge{}  c  I  lbc
      \mwedge{}  c  I  lca
      \mwedge{}  a  I  lca
Date html generated:
2018_05_22-PM-00_51_29
Last ObjectModification:
2017_12_05-AM-11_36_54
Theory : euclidean!plane!geometry
Home
Index