Nuprl Lemma : ip-congruent-trans

[rv:InnerProductSpace]. ∀[a,b,p,q,r,s:Point].  (pq=rs) supposing (ab=rs and ab=pq)


Proof




Definitions occuring in Statement :  ip-congruent: ab=cd inner-product-space: InnerProductSpace ss-point: Point uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  ip-congruent: ab=cd uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} subtype_rel: A ⊆B and: P ∧ Q prop: implies:  Q
Lemmas referenced :  req_inversion rv-norm_wf rv-sub_wf inner-product-space_subtype real_wf rleq_wf int-to-real_wf req_wf rmul_wf rv-ip_wf req_transitivity req_witness ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis lambdaEquality setElimination rename setEquality productEquality natural_numberEquality because_Cache independent_isectElimination independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry instantiate

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,p,q,r,s:Point].    (pq=rs)  supposing  (ab=rs  and  ab=pq)



Date html generated: 2017_10_04-PM-11_56_34
Last ObjectModification: 2017_03_09-PM-07_07_59

Theory : inner!product!spaces


Home Index