Nuprl Lemma : ip-congruent-trans
∀[rv:InnerProductSpace]. ∀[a,b,p,q,r,s:Point].  (pq=rs) supposing (ab=rs and ab=pq)
Proof
Definitions occuring in Statement : 
ip-congruent: ab=cd
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
ip-congruent: ab=cd
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
Lemmas referenced : 
req_inversion, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
req_transitivity, 
req_witness, 
ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,p,q,r,s:Point].    (pq=rs)  supposing  (ab=rs  and  ab=pq)
Date html generated:
2017_10_04-PM-11_56_34
Last ObjectModification:
2017_03_09-PM-07_07_59
Theory : inner!product!spaces
Home
Index