Nuprl Lemma : ip-line-circle
∀rv:InnerProductSpace. ∀a:Point(rv). ∀b:{b:Point(rv)| a # b} . ∀p:{p:Point(rv)| ab ≥ ap} . ∀q:{q:Point(rv)| 
                                                                                             p # q ∧ aq ≥ ab} .
  ∃u:{u:Point(rv)| ab=au ∧ q_u_p} . (∃v:Point(rv) [(ab=av ∧ q_p_v)])
Proof
Definitions occuring in Statement : 
ip-ge: cd ≥ ab
, 
ip-between: a_b_c
, 
ip-congruent: ab=cd
, 
inner-product-space: InnerProductSpace
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ip-ge: cd ≥ ab
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
ip-line-circle-1, 
sq_stable__rv-sep-ext, 
Error :ss-sep_wf, 
ip-ge_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
rv-norm-difference-symmetry, 
rv-norm_wf, 
rv-sub_wf, 
rleq_functionality, 
req_weakening, 
ip-ge-iff, 
sq_stable__not, 
not_wf, 
ip-between_wf, 
ip-congruent_wf, 
sq_stable__ip-congruent, 
sq_stable__ip-between
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
setIsType, 
inhabitedIsType, 
productIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
because_Cache, 
instantiate, 
independent_isectElimination, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
dependent_pairFormation_alt, 
dependent_set_memberFormation_alt, 
independent_pairFormation
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a:Point(rv).  \mforall{}b:\{b:Point(rv)|  a  \#  b\}  .  \mforall{}p:\{p:Point(rv)|  ab  \mgeq{}  ap\}  .
\mforall{}q:\{q:Point(rv)|  p  \#  q  \mwedge{}  aq  \mgeq{}  ab\}  .
    \mexists{}u:\{u:Point(rv)|  ab=au  \mwedge{}  q\_u\_p\}  .  (\mexists{}v:Point(rv)  [(ab=av  \mwedge{}  q\_p\_v)])
Date html generated:
2020_05_20-PM-01_15_42
Last ObjectModification:
2019_12_09-PM-11_24_10
Theory : inner!product!spaces
Home
Index