Nuprl Lemma : ip-line-circle

rv:InnerProductSpace. ∀a:Point(rv). ∀b:{b:Point(rv)| b} . ∀p:{p:Point(rv)| ab ≥ ap} . ∀q:{q:Point(rv)| 
                                                                                             q ∧ aq ≥ ab} .
  ∃u:{u:Point(rv)| ab=au ∧ q_u_p} (∃v:Point(rv) [(ab=av ∧ q_p_v)])


Proof




Definitions occuring in Statement :  ip-ge: cd ≥ ab ip-between: a_b_c ip-congruent: ab=cd inner-product-space: InnerProductSpace all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q sq_stable: SqStable(P) squash: T and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) ip-ge: cd ≥ ab exists: x:A. B[x] cand: c∧ B sq_exists: x:A [B[x]]
Lemmas referenced :  ip-line-circle-1 sq_stable__rv-sep-ext Error :ss-sep_wf,  ip-ge_wf Error :ss-point_wf,  real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  rv-norm-difference-symmetry rv-norm_wf rv-sub_wf rleq_functionality req_weakening ip-ge-iff sq_stable__not not_wf ip-between_wf ip-congruent_wf sq_stable__ip-congruent sq_stable__ip-between
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination productElimination setIsType inhabitedIsType productIsType universeIsType isectElimination applyEquality because_Cache instantiate independent_isectElimination lambdaEquality_alt equalityTransitivity equalitySymmetry productEquality dependent_pairFormation_alt dependent_set_memberFormation_alt independent_pairFormation

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a:Point(rv).  \mforall{}b:\{b:Point(rv)|  a  \#  b\}  .  \mforall{}p:\{p:Point(rv)|  ab  \mgeq{}  ap\}  .
\mforall{}q:\{q:Point(rv)|  p  \#  q  \mwedge{}  aq  \mgeq{}  ab\}  .
    \mexists{}u:\{u:Point(rv)|  ab=au  \mwedge{}  q\_u\_p\}  .  (\mexists{}v:Point(rv)  [(ab=av  \mwedge{}  q\_p\_v)])



Date html generated: 2020_05_20-PM-01_15_42
Last ObjectModification: 2019_12_09-PM-11_24_10

Theory : inner!product!spaces


Home Index