Nuprl Lemma : ip-ge-iff
∀[rv:InnerProductSpace]. ∀[a,b,c,d:Point(rv)].  uiff(cd ≥ ab;||a - b|| ≤ ||c - d||)
Proof
Definitions occuring in Statement : 
ip-ge: cd ≥ ab
, 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rleq: x ≤ y
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
prop: ℙ
, 
ip-ge: cd ≥ ab
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
exists: ∃x:A. B[x]
, 
stable: Stable{P}
, 
or: P ∨ Q
, 
ip-congruent: ab=cd
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ip-gt: cd > ab
, 
cand: A c∧ B
, 
squash: ↓T
Lemmas referenced : 
le_witness_for_triv, 
ip-ge_wf, 
rleq_wf, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
ip-congruent_wf, 
ip-between_wf, 
exists_wf, 
not_wf, 
or_wf, 
false_wf, 
rv-ip_wf, 
rmul_wf, 
req_wf, 
int-to-real_wf, 
real_wf, 
stable__rleq, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
ip-dist-between, 
rv-norm-nonneg, 
rminus_wf, 
radd-preserves-rleq, 
radd_wf, 
rleq_functionality, 
req_weakening, 
req_transitivity, 
radd_functionality, 
uiff_transitivity, 
rminus-as-rmul, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
radd-assoc, 
rmul_functionality, 
radd-int, 
rmul-zero-both, 
radd-zero-both, 
stable__not, 
rless_wf, 
istype-void, 
ip-gt-iff, 
not-rless, 
ip-between-trivial2, 
req_fake_le_antisymmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
productElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
voidElimination, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
lambdaFormation, 
independent_functionElimination, 
functionEquality, 
natural_numberEquality, 
productEquality, 
setEquality, 
lambdaEquality, 
unionElimination, 
addEquality, 
minusEquality, 
unionEquality, 
functionIsType, 
productIsType, 
unionIsType, 
lambdaFormation_alt, 
dependent_pairFormation, 
imageElimination, 
dependent_pairFormation_alt
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d:Point(rv)].    uiff(cd  \mgeq{}  ab;||a  -  b||  \mleq{}  ||c  -  d||)
Date html generated:
2020_05_20-PM-01_15_36
Last ObjectModification:
2019_12_08-PM-07_01_49
Theory : inner!product!spaces
Home
Index