Nuprl Lemma : ip-gt-iff
∀rv:InnerProductSpace. ∀a,b,c,d:Point(rv).  uiff(cd > ab;||a - b|| < ||c - d||)
Proof
Definitions occuring in Statement : 
ip-gt: cd > ab
, 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rless: x < y
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
ip-gt: cd > ab
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
ip-congruent: ab=cd
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
rv-sub: x - y
, 
rv-minus: -x
, 
cand: A c∧ B
, 
ss-eq: Error :ss-eq, 
true: True
, 
i-member: r ∈ I
, 
rccint: [l, u]
Lemmas referenced : 
ip-gt_wf, 
rless_wf, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
sq_stable__rless, 
ip-dist-between, 
radd_wf, 
radd-preserves-rless, 
rminus_wf, 
int-to-real_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMinus_wf, 
itermVar_wf, 
itermConstant_wf, 
rless_functionality, 
req_weakening, 
req_transitivity, 
radd_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rv-sep-iff-norm, 
rv-norm-nonneg, 
rless_transitivity2, 
member_rccint_lemma, 
rmul_preserves_rleq, 
rdiv_wf, 
rmul_wf, 
itermMultiply_wf, 
rinv_wf2, 
rleq_weakening_rless, 
rleq_functionality, 
rmul_functionality, 
rmul-rinv, 
real_term_value_mul_lemma, 
radd-preserves-rleq, 
rsub_wf, 
trivial-rleq-radd, 
Error :ss-eq_wf, 
rv-add_wf, 
rv-mul_wf, 
rv-minus_wf, 
uiff_transitivity, 
Error :ss-eq_functionality, 
rv-add_functionality, 
Error :ss-eq_weakening, 
rv-mul-linear, 
rv-add-assoc, 
rv-mul-mul, 
rv-add-swap, 
rv-mul-1-add, 
rv-mul_functionality, 
rsub_functionality, 
ip-between-iff2, 
i-member_wf, 
rccint_wf, 
Error :ss-sep_wf, 
ip-between_wf, 
ip-congruent_wf, 
rv-add-comm, 
rv-mul-add, 
req_wf, 
rabs_wf, 
uiff_transitivity2, 
req_functionality, 
rv-norm_functionality, 
rv-norm-mul, 
squash_wf, 
true_wf, 
real_wf, 
rabs-rminus, 
rmul_preserves_req, 
rabs-of-nonneg, 
rmul-rinv3, 
rv-norm-difference-symmetry, 
rv-mul-add-alt, 
rless-implies-rless, 
rminus_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
imageElimination, 
hypothesis, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
rename, 
universeIsType, 
extract_by_obid, 
isectElimination, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
natural_numberEquality, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
inrFormation_alt, 
closedConclusion, 
equalityIstype, 
minusEquality, 
dependent_pairFormation_alt, 
productIsType
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c,d:Point(rv).    uiff(cd  >  ab;||a  -  b||  <  ||c  -  d||)
Date html generated:
2020_05_20-PM-01_15_31
Last ObjectModification:
2019_12_10-AM-10_20_39
Theory : inner!product!spaces
Home
Index