Nuprl Lemma : ip-gt-iff

rv:InnerProductSpace. ∀a,b,c,d:Point(rv).  uiff(cd > ab;||a b|| < ||c d||)


Proof




Definitions occuring in Statement :  ip-gt: cd > ab rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rless: x < y uiff: uiff(P;Q) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T ip-gt: cd > ab squash: T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} sq_stable: SqStable(P) implies:  Q exists: x:A. B[x] ip-congruent: ab=cd iff: ⇐⇒ Q rev_implies:  Q req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top rneq: x ≠ y or: P ∨ Q rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) rv-sub: y rv-minus: -x cand: c∧ B ss-eq: Error :ss-eq,  true: True i-member: r ∈ I rccint: [l, u]
Lemmas referenced :  ip-gt_wf rless_wf rv-norm_wf rv-sub_wf inner-product-space_subtype Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  sq_stable__rless ip-dist-between radd_wf radd-preserves-rless rminus_wf int-to-real_wf itermSubtract_wf itermAdd_wf itermMinus_wf itermVar_wf itermConstant_wf rless_functionality req_weakening req_transitivity radd_functionality req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma rv-sep-iff-norm rv-norm-nonneg rless_transitivity2 member_rccint_lemma rmul_preserves_rleq rdiv_wf rmul_wf itermMultiply_wf rinv_wf2 rleq_weakening_rless rleq_functionality rmul_functionality rmul-rinv real_term_value_mul_lemma radd-preserves-rleq rsub_wf trivial-rleq-radd Error :ss-eq_wf,  rv-add_wf rv-mul_wf rv-minus_wf uiff_transitivity Error :ss-eq_functionality,  rv-add_functionality Error :ss-eq_weakening,  rv-mul-linear rv-add-assoc rv-mul-mul rv-add-swap rv-mul-1-add rv-mul_functionality rsub_functionality ip-between-iff2 i-member_wf rccint_wf Error :ss-sep_wf,  ip-between_wf ip-congruent_wf rv-add-comm rv-mul-add req_wf rabs_wf uiff_transitivity2 req_functionality rv-norm_functionality rv-norm-mul squash_wf true_wf real_wf rabs-rminus rmul_preserves_req rabs-of-nonneg rmul-rinv3 rv-norm-difference-symmetry rv-mul-add-alt rless-implies-rless rminus_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution imageElimination hypothesis imageMemberEquality hypothesisEquality thin baseClosed rename universeIsType extract_by_obid isectElimination applyEquality lambdaEquality_alt setElimination inhabitedIsType equalityTransitivity equalitySymmetry because_Cache instantiate independent_isectElimination dependent_functionElimination independent_functionElimination productElimination natural_numberEquality approximateComputation int_eqEquality isect_memberEquality_alt voidElimination inrFormation_alt closedConclusion equalityIstype minusEquality dependent_pairFormation_alt productIsType

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c,d:Point(rv).    uiff(cd  >  ab;||a  -  b||  <  ||c  -  d||)



Date html generated: 2020_05_20-PM-01_15_31
Last ObjectModification: 2019_12_10-AM-10_20_39

Theory : inner!product!spaces


Home Index