Nuprl Lemma : rv-orthog-ext_wf

rv:InnerProductSpace. ∀f:Point ⟶ Point.
  rv-orthog-ext(rv;f) ∈ ∀x,y:Point.  (f  y) supposing Orthogonal(f)


Proof




Definitions occuring in Statement :  rv-orthog-ext: rv-orthog-ext(rv;f) rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace ss-sep: y ss-point: Point uimplies: supposing a all: x:A. B[x] implies:  Q member: t ∈ T apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  rv-orthog-ext: rv-orthog-ext(rv;f) rv-orthogonal-implies-extensional-ext so_apply: x[s] implies:  Q prop: guard: {T} so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  ss-sep_wf rv-orthogonal_wf isect_wf separation-space_wf real-vector-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-point_wf inner-product-space_wf all_wf rv-orthogonal-implies-extensional-ext
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality universeEquality cumulativity functionExtensionality dependent_functionElimination because_Cache independent_isectElimination functionEquality isectElimination hypothesisEquality sqequalRule sqequalHypSubstitution lambdaEquality hypothesis extract_by_obid instantiate thin applyEquality cut introduction isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point  {}\mrightarrow{}  Point.
    rv-orthog-ext(rv;f)  \mmember{}  \mforall{}x,y:Point.    (f  x  \#  f  y  {}\mRightarrow{}  x  \#  y)  supposing  Orthogonal(f)



Date html generated: 2016_11_08-AM-09_18_40
Last ObjectModification: 2016_11_02-PM-04_27_39

Theory : inner!product!spaces


Home Index