Nuprl Lemma : sq_stable__proj-sep

n:ℕ. ∀a,b:ℙ^n.  SqStable(a ≠ b)


Proof




Definitions occuring in Statement :  proj-sep: a ≠ b real-proj: ^n nat: sq_stable: SqStable(P) all: x:A. B[x]
Definitions unfolded in proof :  proj-sep: a ≠ b real-vec-sep: a ≠ b all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B
Lemmas referenced :  sq_stable__and rless_wf int-to-real_wf real-vec-dist_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf punit_wf real-vec_wf req_wf real-vec-norm_wf real-vec-mul_wf sq_stable__rless real-proj_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis dependent_set_memberEquality addEquality setElimination rename hypothesisEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation applyEquality setEquality because_Cache minusEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbP{}\^{}n.    SqStable(a  \mneq{}  b)



Date html generated: 2017_10_05-AM-00_17_39
Last ObjectModification: 2017_06_18-PM-02_08_12

Theory : inner!product!spaces


Home Index