Nuprl Lemma : trans-kernel_wf

[rv:InnerProductSpace]. ∀[e:Point]. ∀[T:ℝ ⟶ Point ⟶ Point]. ∀[t:ℝ]. ∀[h:{h:Point| h ⋅ r0} ].  (h;t) ∈ ℝ)


Proof




Definitions occuring in Statement :  trans-kernel: ρ(h;t) rv-ip: x ⋅ y inner-product-space: InnerProductSpace req: y int-to-real: r(n) real: ss-point: Point uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T trans-kernel: ρ(h;t) all: x:A. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  rv-ip_wf trans-apply_wf real_wf set_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_wf int-to-real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_functionElimination functionExtensionality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry instantiate independent_isectElimination lambdaEquality natural_numberEquality because_Cache isect_memberEquality functionEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e:Point].  \mforall{}[T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point].  \mforall{}[t:\mBbbR{}].  \mforall{}[h:\{h:Point|  h  \mcdot{}  e  =  r0\}  ].
    (\mrho{}(h;t)  \mmember{}  \mBbbR{})



Date html generated: 2017_10_05-AM-00_22_27
Last ObjectModification: 2017_06_26-PM-00_51_00

Theory : inner!product!spaces


Home Index