Nuprl Lemma : trans-kernel_wf
∀[rv:InnerProductSpace]. ∀[e:Point]. ∀[T:ℝ ⟶ Point ⟶ Point]. ∀[t:ℝ]. ∀[h:{h:Point| h ⋅ e = r0} ].  (ρ(h;t) ∈ ℝ)
Proof
Definitions occuring in Statement : 
trans-kernel: ρ(h;t)
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
trans-kernel: ρ(h;t)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
rv-ip_wf, 
trans-apply_wf, 
real_wf, 
set_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
req_wf, 
int-to-real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
functionExtensionality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
natural_numberEquality, 
because_Cache, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e:Point].  \mforall{}[T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point].  \mforall{}[t:\mBbbR{}].  \mforall{}[h:\{h:Point|  h  \mcdot{}  e  =  r0\}  ].
    (\mrho{}(h;t)  \mmember{}  \mBbbR{})
Date html generated:
2017_10_05-AM-00_22_27
Last ObjectModification:
2017_06_26-PM-00_51_00
Theory : inner!product!spaces
Home
Index