Nuprl Lemma : assert-lattice-ble
∀[l:LatticeStructure]. ∀[eq:EqDecider(Point(l))]. ∀[a,b:Point(l)].  uiff(↑lattice-ble(l;eq;a;b);a ≤ b)
Proof
Definitions occuring in Statement : 
lattice-ble: lattice-ble(l;eq;a;b)
, 
lattice-le: a ≤ b
, 
lattice-point: Point(l)
, 
lattice-structure: LatticeStructure
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
lattice-le: a ≤ b
, 
lattice-ble: lattice-ble(l;eq;a;b)
, 
member: t ∈ T
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
eqof: eqof(d)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
prop: ℙ
, 
true: True
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
false: False
, 
not: ¬A
Lemmas referenced : 
lattice-meet_wf, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
true_wf, 
equal_wf, 
lattice-point_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
false_wf, 
assert_wf, 
lattice-ble_wf, 
lattice-le_wf, 
deq_wf, 
lattice-structure_wf, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
applyEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
independent_pairFormation, 
isect_memberFormation, 
natural_numberEquality, 
axiomEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
independent_pairEquality, 
isect_memberEquality
Latex:
\mforall{}[l:LatticeStructure].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[a,b:Point(l)].
    uiff(\muparrow{}lattice-ble(l;eq;a;b);a  \mleq{}  b)
Date html generated:
2017_10_05-AM-00_33_23
Last ObjectModification:
2017_07_28-AM-09_13_45
Theory : lattices
Home
Index