Nuprl Lemma : free-dl-0-not-1

T:Type. ∀eq:EqDecider(T).  (0 1 ∈ Point(free-dist-lattice(T; eq))))


Proof




Definitions occuring in Statement :  free-dist-lattice: free-dist-lattice(T; eq) lattice-0: 0 lattice-1: 1 lattice-point: Point(l) deq: EqDecider(T) all: x:A. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] not: ¬A implies:  Q false: False uall: [x:A]. B[x] member: t ∈ T top: Top squash: T free-dist-lattice: free-dist-lattice(T; eq) lattice-1: 1 lattice-0: 0 mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a uiff: uiff(P;Q)
Lemmas referenced :  free-dl-point rec_select_update_lemma equal_wf lattice-point_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-0_wf bdd-distributive-lattice_wf lattice-1_wf deq_wf member-fset-singleton fset_wf deq-fset_wf empty-fset_wf fset-member_wf mem_empty_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalHypSubstitution sqequalRule introduction extract_by_obid isectElimination isect_memberEquality voidElimination voidEquality hypothesis applyEquality lambdaEquality setElimination rename imageMemberEquality hypothesisEquality baseClosed equalityUniverse levelHypothesis because_Cache imageElimination dependent_functionElimination independent_functionElimination cumulativity instantiate productEquality universeEquality independent_isectElimination productElimination equalitySymmetry hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).    (\mneg{}(0  =  1))



Date html generated: 2016_10_26-PM-00_57_09
Last ObjectModification: 2016_07_12-AM-08_58_32

Theory : lattices


Home Index