Nuprl Lemma : constant-presheaf-type_wf

[C:SmallCategory]. ∀[X:small_ps_context{i:l}(C)]. ∀[Gamma:ps_context{j:l}(C)].  ((X) ∈ Gamma ⊢ )


Proof




Definitions occuring in Statement :  constant-presheaf-type: (X) presheaf-type: {X ⊢ _} small_ps_context: small_ps_context{i:l}(C) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory spreadn: spread4 and: P ∧ Q small_ps_context: small_ps_context{i:l}(C) cat-functor: Functor(C1;C2) type-cat: TypeCat op-cat: op-cat(C) all: x:A. B[x] constant-presheaf-type: (X) presheaf-type: {X ⊢ _} subtype_rel: A ⊆B cand: c∧ B squash: T true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q compose: g cat-ob: cat-ob(C) pi1: fst(t) cat-arrow: cat-arrow(C) pi2: snd(t) cat-id: cat-id(C) prop:
Lemmas referenced :  cat_arrow_triple_lemma cat_id_tuple_lemma cat_comp_tuple_lemma cat_ob_pair_lemma I_set_pair_redex_lemma psc_restriction_pair_lemma I_set_wf istype-top psc-restriction_wf equal_wf iff_weakening_equal subtype_rel-equal psc-restriction-when-id subtype_rel_self cat-arrow_wf cat-id_wf psc-restriction-comp ps_context_wf small-category-cumulativity-2 small_ps_context_wf small-category-subtype small-category_wf squash_wf true_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut hypothesisEquality sqequalHypSubstitution setElimination thin rename productElimination sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis dependent_set_memberEquality_alt dependent_pairEquality_alt lambdaEquality_alt applyEquality universeIsType isectElimination equalityTransitivity equalitySymmetry inhabitedIsType because_Cache functionIsType lambdaFormation_alt independent_pairFormation imageElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination productIsType equalityIstype instantiate universeEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:small\_ps\_context\{i:l\}(C)].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].    ((X)  \mmember{}  Gamma  \mvdash{}  )



Date html generated: 2020_05_20-PM-01_34_52
Last ObjectModification: 2020_04_03-AM-01_19_06

Theory : presheaf!models!of!type!theory


Home Index