Nuprl Lemma : presheaf-type-ap-morph-comp

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[I,J,K:cat-ob(C)]. ∀[f:cat-arrow(C) I].
[g:cat-arrow(C) J]. ∀[a:X(I)]. ∀[u:A(a)].
  (((u f) f(a) g) (u cat-comp(C) f) ∈ A(cat-comp(C) f(a)))


Proof




Definitions occuring in Statement :  presheaf-type-ap-morph: (u f) presheaf-type-at: A(a) presheaf-type: {X ⊢ _} psc-restriction: f(s) I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] apply: a equal: t ∈ T cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-type: {X ⊢ _} presheaf-type-ap-morph: (u f) presheaf-type-at: A(a) pi1: fst(t) pi2: snd(t) all: x:A. B[x] and: P ∧ Q squash: T prop: subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  presheaf_type_at_pair_lemma equal_wf squash_wf true_wf istype-universe psc-restriction_wf ps_context_cumulativity2 small-category-cumulativity-2 cat-comp_wf subtype_rel_self iff_weakening_equal presheaf-type-at_wf cat-arrow_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination Error :memTop,  hypothesis applyEquality lambdaEquality_alt imageElimination isectElimination hypothesisEquality equalityTransitivity equalitySymmetry universeIsType instantiate universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I,J,K:cat-ob(C)].
\mforall{}[f:cat-arrow(C)  J  I].  \mforall{}[g:cat-arrow(C)  K  J].  \mforall{}[a:X(I)].  \mforall{}[u:A(a)].
    (((u  a  f)  f(a)  g)  =  (u  a  cat-comp(C)  K  J  I  g  f))



Date html generated: 2020_05_20-PM-01_25_57
Last ObjectModification: 2020_04_01-AM-11_51_01

Theory : presheaf!models!of!type!theory


Home Index