Nuprl Lemma : pscm-ap-presheaf-snd

[C:SmallCategory]. ∀[X,Delta:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[p:{X ⊢ _:Σ B}].
[s:psc_map{j:l}(C; Delta; X)].
  ((p.2)s (p)s.2 ∈ {Delta ⊢ _:((B)[p.1])s})


Proof




Definitions occuring in Statement :  presheaf-snd: p.2 presheaf-fst: p.1 presheaf-sigma: Σ B pscm-id-adjoin: [u] psc-adjoin: X.A pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  pscm-presheaf-snd pscm-ap-term_wf pscm-ap-type_wf psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-id-adjoin_wf presheaf-fst_wf presheaf-snd_wf psc_map_wf presheaf-term_wf presheaf-sigma_wf presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis hypothesisEquality instantiate applyEquality because_Cache universeIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Delta:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[p:\{X  \mvdash{}  \_:\mSigma{}  A  B\}].
\mforall{}[s:psc\_map\{j:l\}(C;  Delta;  X)].
    ((p.2)s  =  (p)s.2)



Date html generated: 2020_05_20-PM-01_32_08
Last ObjectModification: 2020_04_02-PM-06_29_32

Theory : presheaf!models!of!type!theory


Home Index