Nuprl Lemma : presheaf-snd_wf
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[p:{X ⊢ _:Σ A B}].  (p.2 ∈ {X ⊢ _:(B)[p.1]})
Proof
Definitions occuring in Statement : 
presheaf-snd: p.2, 
presheaf-fst: p.1, 
presheaf-sigma: Σ A B, 
pscm-id-adjoin: [u], 
psc-adjoin: X.A, 
presheaf-term: {X ⊢ _:A}, 
pscm-ap-type: (AF)s, 
presheaf-type: {X ⊢ _}, 
ps_context: __⊢, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
presheaf-snd: p.2, 
subtype_rel: A ⊆r B, 
presheaf-term: {X ⊢ _:A}, 
presheaf-sigma: Σ A B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
pi1: fst(t), 
pi2: snd(t), 
presheaf-type-at: A(a), 
presheaf-type: {X ⊢ _}, 
pscm-id-adjoin: [u], 
pscm-ap-type: (AF)s, 
pscm-adjoin: (s;u), 
pscm-ap: (s)x, 
psc-adjoin-set: (v;u), 
presheaf-fst: p.1, 
pscm-id: 1(X), 
and: P ∧ Q, 
presheaf-type-ap-morph: (u a f), 
psc-adjoin: X.A, 
I_set: A(I), 
functor-ob: ob(F), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
prop: ℙ, 
squash: ↓T, 
true: True, 
guard: {T}
Lemmas referenced : 
presheaf-fst_wf, 
presheaf-term_wf, 
presheaf-sigma_wf, 
presheaf-type_wf, 
psc-adjoin_wf, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
presheaf-type-cumulativity2, 
ps_context_wf, 
small-category_wf, 
presheaf_type_at_pair_lemma, 
I_set_wf, 
cat-ob_wf, 
subtype_rel_self, 
presheaf-type-at_wf, 
psc-adjoin-set_wf, 
pscm-ap-type-at, 
cat-arrow_wf, 
presheaf_type_ap_morph_pair_lemma, 
ob_pair_lemma, 
psc-restriction_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
equal_wf, 
subtype_rel_weakening, 
ext-eq_weakening, 
pscm-ap-type_wf, 
pscm-id-adjoin_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
applyEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
Error :memTop, 
lambdaEquality_alt, 
lambdaFormation_alt, 
productElimination, 
equalityIstype, 
independent_functionElimination, 
promote_hyp, 
dependent_pairEquality_alt, 
applyLambdaEquality, 
independent_pairEquality, 
because_Cache, 
independent_isectElimination, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
functionIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[p:\{X  \mvdash{}  \_:\mSigma{}  A  B\}].
    (p.2  \mmember{}  \{X  \mvdash{}  \_:(B)[p.1]\})
Date html generated:
2020_05_20-PM-01_32_05
Last ObjectModification:
2020_04_02-PM-06_32_45
Theory : presheaf!models!of!type!theory
Home
Index