Nuprl Lemma : adjacent-cubes_wf
∀[k:ℕ]. ∀[c1,c2:real-cube(k)].  (adjacent-cubes(k;c1;c2) ∈ ℙ)
Proof
Definitions occuring in Statement : 
adjacent-cubes: adjacent-cubes(k;c1;c2), 
real-cube: real-cube(k), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
adjacent-cubes: adjacent-cubes(k;c1;c2), 
nat: ℕ, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
all: ∀x:A. B[x], 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
or: P ∨ Q
Lemmas referenced : 
exists_wf, 
int_seg_wf, 
all_wf, 
not_wf, 
equal-wf-base, 
req_wf, 
cube-lower_wf, 
cube-upper_wf, 
or_wf, 
subtype_rel_self, 
real_wf, 
real-cube_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaEquality_alt, 
productEquality, 
functionEquality, 
applyEquality, 
hypothesisEquality, 
inhabitedIsType, 
productElimination, 
imageElimination, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c1,c2:real-cube(k)].    (adjacent-cubes(k;c1;c2)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-11_31_36
Last ObjectModification:
2019_09_27-PM-01_35_30
Theory : real!vectors
Home
Index