Nuprl Lemma : not-not-in-0-dim-cube

[k:ℕ]. ∀[c:ℚCube(k)].
  ∀[p:ℝ^k]. uiff(¬¬in-rat-cube(k;p;c);req-vec(k;p;λj.rat2real(fst((c j))))) supposing dim(c) 0 ∈ ℤ


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) req-vec: req-vec(n;x;y) real-vec: ^n rat2real: rat2real(q) nat: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) not: ¬A apply: a lambda: λx.A[x] natural_number: $n int: equal: t ∈ T rat-cube-dimension: dim(c) rational-cube: Cube(k)
Definitions unfolded in proof :  stable: Stable{P} so_apply: x[s] so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B rev_implies:  Q iff: ⇐⇒ Q false: False prop: nat: not: ¬A pi1: fst(t) rational-interval: Interval implies:  Q rational-cube: Cube(k) real-vec: ^n all: x:A. B[x] req-vec: req-vec(n;x;y) member: t ∈ T and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  stable_req req_wf stable__all istype-nat rational-cube_wf int_subtype_base lelt_wf set_subtype_base rat-cube-dimension_wf istype-int real-vec_wf in-0-dim-cube in-rat-cube_wf iff_weakening_uiff istype-void int_seg_wf req-vec_wf rat2real_wf req_witness
Rules used in proof :  sqequalBase baseClosed addEquality minusEquality intEquality promote_hyp independent_isectElimination because_Cache voidElimination rename setElimination natural_numberEquality universeIsType functionIsType functionIsTypeImplies independent_functionElimination equalitySymmetry equalityTransitivity equalityIstype productElimination lambdaFormation_alt hypothesis inhabitedIsType applyEquality isectElimination extract_by_obid hypothesisEquality thin dependent_functionElimination lambdaEquality_alt sqequalHypSubstitution sqequalRule introduction independent_pairFormation cut isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].
    \mforall{}[p:\mBbbR{}\^{}k].  uiff(\mneg{}\mneg{}in-rat-cube(k;p;c);req-vec(k;p;\mlambda{}j.rat2real(fst((c  j)))))  supposing  dim(c)  =  0



Date html generated: 2019_10_30-AM-10_12_58
Last ObjectModification: 2019_10_28-PM-04_28_41

Theory : real!vectors


Home Index