Nuprl Lemma : not-not-in-0-dim-cube
∀[k:ℕ]. ∀[c:ℚCube(k)].
  ∀[p:ℝ^k]. uiff(¬¬in-rat-cube(k;p;c);req-vec(k;p;λj.rat2real(fst((c j))))) supposing dim(c) = 0 ∈ ℤ
Proof
Definitions occuring in Statement : 
in-rat-cube: in-rat-cube(k;p;c), 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
rat2real: rat2real(q), 
nat: ℕ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
not: ¬A, 
apply: f a, 
lambda: λx.A[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T, 
rat-cube-dimension: dim(c), 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
stable: Stable{P}, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
false: False, 
prop: ℙ, 
nat: ℕ, 
not: ¬A, 
pi1: fst(t), 
rational-interval: ℚInterval, 
implies: P ⇒ Q, 
rational-cube: ℚCube(k), 
real-vec: ℝ^n, 
all: ∀x:A. B[x], 
req-vec: req-vec(n;x;y), 
member: t ∈ T, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
stable_req, 
req_wf, 
stable__all, 
istype-nat, 
rational-cube_wf, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
istype-int, 
real-vec_wf, 
in-0-dim-cube, 
in-rat-cube_wf, 
iff_weakening_uiff, 
istype-void, 
int_seg_wf, 
req-vec_wf, 
rat2real_wf, 
req_witness
Rules used in proof : 
sqequalBase, 
baseClosed, 
addEquality, 
minusEquality, 
intEquality, 
promote_hyp, 
independent_isectElimination, 
because_Cache, 
voidElimination, 
rename, 
setElimination, 
natural_numberEquality, 
universeIsType, 
functionIsType, 
functionIsTypeImplies, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
productElimination, 
lambdaFormation_alt, 
hypothesis, 
inhabitedIsType, 
applyEquality, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
independent_pairFormation, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].
    \mforall{}[p:\mBbbR{}\^{}k].  uiff(\mneg{}\mneg{}in-rat-cube(k;p;c);req-vec(k;p;\mlambda{}j.rat2real(fst((c  j)))))  supposing  dim(c)  =  0
Date html generated:
2019_10_30-AM-10_12_58
Last ObjectModification:
2019_10_28-PM-04_28_41
Theory : real!vectors
Home
Index