Nuprl Lemma : real-unit-sphere-subtype-ball

[n:ℕ]. (S(n) ⊆B(n 1))


Proof




Definitions occuring in Statement :  real-unit-sphere: S(n) real-unit-ball: B(n) nat: subtype_rel: A ⊆B uall: [x:A]. B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-unit-sphere: S(n) real-unit-ball: B(n) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_sets_simple real-vec_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le req_wf real-vec-norm_wf int-to-real_wf rleq_wf rleq_weakening istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType because_Cache lambdaFormation_alt axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  (S(n)  \msubseteq{}r  B(n  +  1))



Date html generated: 2019_10_30-AM-10_15_19
Last ObjectModification: 2019_07_30-AM-09_21_44

Theory : real!vectors


Home Index