Nuprl Lemma : IVT-strict-increasing

I:Interval. ∀f:I ⟶ℝ.
  ((∀x,y:{x:ℝx ∈ I} .  ((x < y)  ((f x) < (f y))))
   (∀x,y:{t:ℝt ∈ I} .  ((x y)  ((f x) (f y))))
   (∀a,b:{x:ℝx ∈ I} .
        ((a < b)  (∀x:ℝ((((f a) ≤ x) ∧ (x ≤ (f b)))  (∃c:ℝ [(((a ≤ c) ∧ (c ≤ b)) ∧ ((f c) x))]))))))


Proof




Definitions occuring in Statement :  rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rleq: x ≤ y rless: x < y req: y real: all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T or: P ∨ Q uall: [x:A]. B[x] prop: rfun: I ⟶ℝ subinterval: I ⊆  top: Top sq_stable: SqStable(P) squash: T subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] r-ap: f(x) guard: {T}
Lemmas referenced :  strict-monotonic-is-locally-non-constant rless_wf member_rccint_lemma istype-void i-member-between sq_stable__i-member rleq_wf IVT-locally-non-constant rfun_subtype rccint_wf subtype_rel_sets_simple real_wf i-member_wf req_wf rfun_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination inlFormation_alt hypothesis sqequalRule functionIsType because_Cache universeIsType isectElimination setElimination rename applyEquality isect_memberEquality_alt voidElimination imageMemberEquality baseClosed imageElimination productIsType dependent_set_memberEquality_alt independent_isectElimination lambdaEquality_alt inhabitedIsType setIsType

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  <  y)  {}\mRightarrow{}  ((f  x)  <  (f  y))))
    {}\mRightarrow{}  (\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y))))
    {}\mRightarrow{}  (\mforall{}a,b:\{x:\mBbbR{}|  x  \mmember{}  I\}  .
                ((a  <  b)
                {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  ((((f  a)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  (f  b)))  {}\mRightarrow{}  (\mexists{}c:\mBbbR{}  [(((a  \mleq{}  c)  \mwedge{}  (c  \mleq{}  b))  \mwedge{}  ((f  c)  =  x))]))))))



Date html generated: 2019_10_30-AM-07_50_14
Last ObjectModification: 2019_02_12-AM-11_00_07

Theory : reals


Home Index