Nuprl Lemma : IVT-strict-monotonic

I:Interval. ∀f:I ⟶ℝ.
  (((∀x,y:{x:ℝx ∈ I} .  ((x < y)  ((f x) < (f y)))) ∨ (∀x,y:{x:ℝx ∈ I} .  ((x < y)  ((f y) < (f x)))))
   (∀x,y:{t:ℝt ∈ I} .  ((x y)  ((f x) (f y))))
   (∀a,b:{x:ℝx ∈ I} .
        (a ≠ b
         (∀x:ℝ
              (((((f a) ≤ x) ∧ (x ≤ (f b))) ∨ (((f b) ≤ x) ∧ (x ≤ (f a))))
               (∃c:ℝ((((a ≤ c) ∧ (c ≤ b)) ∨ ((b ≤ c) ∧ (c ≤ a))) ∧ ((f c) x))))))))


Proof




Definitions occuring in Statement :  rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rneq: x ≠ y rleq: x ≤ y rless: x < y req: y real: all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B sq_stable: SqStable(P) squash: T uall: [x:A]. B[x] prop: or: P ∨ Q rneq: x ≠ y sq_exists: x:A [B[x]] subinterval: I ⊆  top: Top exists: x:A. B[x] rfun: I ⟶ℝ guard: {T} uimplies: supposing a false: False
Lemmas referenced :  rcc-subinterval sq_stable__i-member rleq_wf IVT-strict-increasing member_rccint_lemma istype-void sq_stable__rleq sq_stable__req i-member_wf req_wf rless_transitivity1 rless_irreflexivity rleq_weakening_rless rless_transitivity2 IVT-strict-decreasing real_wf rneq_wf rless_wf rfun_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache productElimination independent_functionElimination setElimination rename hypothesis sqequalRule imageMemberEquality baseClosed imageElimination independent_pairFormation universeIsType isectElimination unionElimination isect_memberEquality_alt voidElimination dependent_pairFormation_alt inlFormation_alt productIsType applyEquality dependent_set_memberEquality_alt unionIsType independent_isectElimination inrFormation_alt inhabitedIsType setIsType functionIsType

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  <  y)  {}\mRightarrow{}  ((f  x)  <  (f  y))))
      \mvee{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  <  y)  {}\mRightarrow{}  ((f  y)  <  (f  x)))))
    {}\mRightarrow{}  (\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y))))
    {}\mRightarrow{}  (\mforall{}a,b:\{x:\mBbbR{}|  x  \mmember{}  I\}  .
                (a  \mneq{}  b
                {}\mRightarrow{}  (\mforall{}x:\mBbbR{}
                            (((((f  a)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  (f  b)))  \mvee{}  (((f  b)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  (f  a))))
                            {}\mRightarrow{}  (\mexists{}c:\mBbbR{}.  ((((a  \mleq{}  c)  \mwedge{}  (c  \mleq{}  b))  \mvee{}  ((b  \mleq{}  c)  \mwedge{}  (c  \mleq{}  a)))  \mwedge{}  ((f  c)  =  x))))))))



Date html generated: 2019_10_30-AM-07_51_05
Last ObjectModification: 2019_04_03-AM-00_22_40

Theory : reals


Home Index