Nuprl Lemma : cantor_ivl_wf
∀[a,b:ℝ]. ∀[f:ℕ ⟶ 𝔹]. ∀[n:ℕ].  (cantor_ivl(a;b;f;n) ∈ ℝ × ℝ)
Proof
Definitions occuring in Statement : 
cantor_ivl: cantor_ivl(a;b;f;n)
, 
real: ℝ
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
cantor_ivl: cantor_ivl(a;b;f;n)
, 
has-value: (a)↓
Lemmas referenced : 
exp-fastexp, 
exp_wf3, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
true_wf, 
nequal_wf, 
unit-interval-fan_wf, 
value-type-has-value, 
int-value-type, 
fastexp_wf, 
subtract_wf, 
int-rdiv_wf, 
radd_wf, 
int-rmul_wf, 
nat_wf, 
bool_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
because_Cache, 
addLevel, 
lambdaFormation, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
isect_memberFormation, 
introduction, 
spreadEquality, 
callbyvalueReduce, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].    (cantor\_ivl(a;b;f;n)  \mmember{}  \mBbbR{}  \mtimes{}  \mBbbR{})
Date html generated:
2016_05_18-AM-10_55_32
Last ObjectModification:
2015_12_27-PM-10_43_44
Theory : reals
Home
Index