Nuprl Lemma : cantor_ivl_wf

[a,b:ℝ]. ∀[f:ℕ ⟶ 𝔹]. ∀[n:ℕ].  (cantor_ivl(a;b;f;n) ∈ ℝ × ℝ)


Proof




Definitions occuring in Statement :  cantor_ivl: cantor_ivl(a;b;f;n) real: nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False prop: cantor_ivl: cantor_ivl(a;b;f;n) has-value: (a)↓
Lemmas referenced :  exp-fastexp exp_wf3 subtype_base_sq int_subtype_base equal_wf true_wf nequal_wf unit-interval-fan_wf value-type-has-value int-value-type fastexp_wf subtract_wf int-rdiv_wf radd_wf int-rmul_wf nat_wf bool_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin natural_numberEquality hypothesisEquality hypothesis dependent_set_memberEquality because_Cache addLevel lambdaFormation instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination isect_memberFormation introduction spreadEquality callbyvalueReduce independent_pairEquality axiomEquality isect_memberEquality functionEquality

Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].    (cantor\_ivl(a;b;f;n)  \mmember{}  \mBbbR{}  \mtimes{}  \mBbbR{})



Date html generated: 2016_05_18-AM-10_55_32
Last ObjectModification: 2015_12_27-PM-10_43_44

Theory : reals


Home Index