Nuprl Lemma : unit-interval-fan_wf

[f:ℕ ⟶ 𝔹]. ∀[n:ℕ].  (unit-interval-fan(f;n) ∈ ℤ × ℤ)


Proof




Definitions occuring in Statement :  unit-interval-fan: unit-interval-fan(f;n) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T unit-interval-fan: unit-interval-fan(f;n) subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) has-value: (a)↓ bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  primrec_wf nat_wf int_seg_subtype_nat false_wf bool_wf eqtt_to_assert value-type-has-value int-value-type eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality intEquality because_Cache hypothesisEquality independent_pairEquality natural_numberEquality lambdaEquality productElimination applyEquality functionExtensionality hypothesis setElimination rename independent_isectElimination independent_pairFormation lambdaFormation unionElimination equalityElimination callbyvalueReduce addEquality multiplyEquality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination axiomEquality isect_memberEquality functionEquality

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].    (unit-interval-fan(f;n)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbZ{})



Date html generated: 2017_10_03-AM-09_48_31
Last ObjectModification: 2017_07_28-AM-08_00_34

Theory : reals


Home Index