Nuprl Lemma : decidable__rless-int-fractions
∀a,b:ℤ. ∀c,d:ℕ+.  Dec((r(a)/r(c)) < (r(b)/r(d)))
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rless: x < y, 
int-to-real: r(n), 
nat_plus: ℕ+, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ
Lemmas referenced : 
nat_plus_wf, 
rless-int-fractions, 
less_than_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
rless_wf, 
decidable_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
multiplyEquality
Latex:
\mforall{}a,b:\mBbbZ{}.  \mforall{}c,d:\mBbbN{}\msupplus{}.    Dec((r(a)/r(c))  <  (r(b)/r(d)))
Date html generated:
2016_05_18-AM-07_27_39
Last ObjectModification:
2016_01_17-AM-01_58_11
Theory : reals
Home
Index