Nuprl Lemma : extracted-rroot_wf
∀[i:{2...}]. ∀[x:{x:ℝ| (↑isEven(i)) 
⇒ (r0 ≤ x)} ].
  (extracted-rroot(i;x) ∈ {y:ℝ| ((↑isEven(i)) 
⇒ (r0 ≤ y)) ∧ (y^i = x)} )
Proof
Definitions occuring in Statement : 
extracted-rroot: extracted-rroot(i;x)
, 
rleq: x ≤ y
, 
rnexp: x^k1
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
isEven: isEven(n)
, 
int_upper: {i...}
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
sq_exists: ∃x:A [B[x]]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
int_upper: {i...}
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
extracted-rroot: extracted-rroot(i;x)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
set_wf, 
false_wf, 
upper_subtype_nat, 
rnexp_wf, 
req_wf, 
sq_exists_wf, 
int-to-real_wf, 
rleq_wf, 
isEven_wf, 
assert_wf, 
real_wf, 
all_wf, 
int_upper_wf, 
subtype_rel_self, 
rroot-exists-ext
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
dependent_set_memberEquality, 
productEquality, 
lambdaEquality, 
hypothesisEquality, 
because_Cache, 
setEquality, 
natural_numberEquality, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
instantiate, 
applyEquality, 
sqequalRule, 
rename, 
thin, 
setElimination, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[i:\{2...\}].  \mforall{}[x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  ].
    (extracted-rroot(i;x)  \mmember{}  \{y:\mBbbR{}|  ((\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  y))  \mwedge{}  (y\^{}i  =  x)\}  )
Date html generated:
2018_05_22-PM-02_22_57
Last ObjectModification:
2018_05_21-AM-00_45_41
Theory : reals
Home
Index