Nuprl Lemma : extracted-rroot_wf

[i:{2...}]. ∀[x:{x:ℝ(↑isEven(i))  (r0 ≤ x)} ].
  (extracted-rroot(i;x) ∈ {y:ℝ((↑isEven(i))  (r0 ≤ y)) ∧ (y^i x)} )


Proof




Definitions occuring in Statement :  extracted-rroot: extracted-rroot(i;x) rleq: x ≤ y rnexp: x^k1 req: y int-to-real: r(n) real: isEven: isEven(n) int_upper: {i...} assert: b uall: [x:A]. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B uimplies: supposing a sq_exists: x:A [B[x]] so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] prop: int_upper: {i...} implies:  Q all: x:A. B[x] subtype_rel: A ⊆B extracted-rroot: extracted-rroot(i;x) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set_wf false_wf upper_subtype_nat rnexp_wf req_wf sq_exists_wf int-to-real_wf rleq_wf isEven_wf assert_wf real_wf all_wf int_upper_wf subtype_rel_self rroot-exists-ext
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality lambdaFormation independent_pairFormation independent_isectElimination dependent_set_memberEquality productEquality lambdaEquality hypothesisEquality because_Cache setEquality natural_numberEquality functionEquality isectElimination sqequalHypSubstitution hypothesis extract_by_obid instantiate applyEquality sqequalRule rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[i:\{2...\}].  \mforall{}[x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  ].
    (extracted-rroot(i;x)  \mmember{}  \{y:\mBbbR{}|  ((\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  y))  \mwedge{}  (y\^{}i  =  x)\}  )



Date html generated: 2018_05_22-PM-02_22_57
Last ObjectModification: 2018_05_21-AM-00_45_41

Theory : reals


Home Index