Nuprl Lemma : i-witness_wf
∀[I:Interval]. ∀[r:ℝ]. ∀[p:r ∈ I].  (i-witness(I;r;p) ∈ ℕ+)
Proof
Definitions occuring in Statement : 
i-witness: i-witness(I;r;p)
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
top: Top
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
i-witness: i-witness(I;r;p)
Lemmas referenced : 
equal_wf, 
pi1_wf_top, 
subtype_rel_function, 
i-approx_wf, 
nat_plus_wf, 
exists_wf, 
i-member_wf, 
real_wf, 
all_wf, 
interval_wf, 
subtype_rel_self, 
i-member-witness
Rules used in proof : 
axiomEquality, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
lambdaFormation, 
independent_isectElimination, 
because_Cache, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[I:Interval].  \mforall{}[r:\mBbbR{}].  \mforall{}[p:r  \mmember{}  I].    (i-witness(I;r;p)  \mmember{}  \mBbbN{}\msupplus{})
Date html generated:
2018_05_22-PM-02_05_11
Last ObjectModification:
2018_05_21-AM-00_18_02
Theory : reals
Home
Index