Nuprl Lemma : matrix-times-req-real-matrix-times
∀[n,a,b:ℕ]. ∀[A:ℝ(a × n)]. ∀[B:ℝ(n × b)].  (A*B) ≡ (A*B)
Proof
Definitions occuring in Statement : 
real-matrix-times: (A*B), 
reqmatrix: X ≡ Y, 
rmatrix: ℝ(a × b), 
real-ring: real-ring(), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
matrix-times: (M*N)
Definitions unfolded in proof : 
real-matrix-times: (A*B), 
matrix-times: (M*N), 
real-ring: real-ring(), 
rng_times: *, 
pi2: snd(t), 
pi1: fst(t), 
infix_ap: x f y, 
matrix-ap: M[i,j], 
rng_sum: rng_sum, 
mx: matrix(M[x; y]), 
mon_itop: Π lb ≤ i < ub. E[i], 
add_grp_of_rng: r↓+gp, 
grp_op: *, 
grp_id: e, 
rng_plus: +r, 
rng_zero: 0, 
reqmatrix: X ≡ Y, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
rmatrix: ℝ(a × b), 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
less_than: a < b, 
squash: ↓T, 
implies: P ⇒ Q
Lemmas referenced : 
rsum-as-itop, 
rmul_wf, 
int_seg_wf, 
itop_wf, 
real_wf, 
radd_wf, 
int-to-real_wf, 
req_witness, 
real-matrix-times_wf, 
subtype_rel_self, 
rmatrix_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
hypothesisEquality, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
because_Cache, 
natural_numberEquality, 
inhabitedIsType, 
isect_memberFormation_alt, 
dependent_functionElimination, 
functionEquality, 
imageElimination, 
independent_functionElimination, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[n,a,b:\mBbbN{}].  \mforall{}[A:\mBbbR{}(a  \mtimes{}  n)].  \mforall{}[B:\mBbbR{}(n  \mtimes{}  b)].    (A*B)  \mequiv{}  (A*B)
 Date html generated: 
2019_10_30-AM-08_16_41
 Last ObjectModification: 
2019_09_19-AM-11_36_33
Theory : reals
Home
Index