Nuprl Lemma : rsum-as-itop
∀[n,m:ℤ]. ∀[x:{n..m-} ⟶ ℝ].  (Π(λx,y. (x + y),r0) n ≤ k < m. x[k] = Σ{x[k] | n≤k≤m - 1})
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
nat: ℕ
, 
ge: i ≥ j 
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
ycomb: Y
, 
infix_ap: x f y
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtract: n - m
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
decidable__lt, 
req_witness, 
itop_wf, 
real_wf, 
radd_wf, 
int-to-real_wf, 
int_seg_wf, 
rsum_wf, 
subtract_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformless_wf, 
itermAdd_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
istype-le, 
istype-less_than, 
nat_properties, 
ge_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
subtract-1-ge-0, 
istype-nat, 
int_subtype_base, 
add-associates, 
minus-one-mul, 
add-swap, 
add-mul-special, 
add-commutes, 
zero-add, 
zero-mul, 
add-zero, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
add-subtract-cancel, 
radd-zero-both, 
req_functionality, 
req_weakening, 
rsum-single, 
subtract-add-cancel, 
rsum-split-last, 
radd_functionality, 
rsum-empty
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
isectElimination, 
lambdaEquality_alt, 
inhabitedIsType, 
universeIsType, 
natural_numberEquality, 
sqequalRule, 
applyEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
productElimination, 
imageElimination, 
independent_pairFormation, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
because_Cache, 
addEquality, 
functionIsType, 
isectIsTypeImplies, 
lambdaFormation_alt, 
intWeakElimination, 
functionIsTypeImplies, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
intEquality, 
multiplyEquality, 
closedConclusion, 
setIsType
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (\mPi{}(\mlambda{}x,y.  (x  +  y),r0)  n  \mleq{}  k  <  m.  x[k]  =  \mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m  -  1\})
Date html generated:
2019_10_29-AM-10_19_40
Last ObjectModification:
2019_09_19-AM-11_34_56
Theory : reals
Home
Index