Nuprl Lemma : rsum-as-itop

[n,m:ℤ]. ∀[x:{n..m-} ⟶ ℝ].  x,y. (x y),r0) n ≤ k < m. x[k] = Σ{x[k] n≤k≤1})


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y radd: b int-to-real: r(n) real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m natural_number: $n int: itop: Π(op,id) lb ≤ i < ub. E[i]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q less_than: a < b squash: T uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: nat: ge: i ≥  itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y infix_ap: y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q subtract: m rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  decidable__lt req_witness itop_wf real_wf radd_wf int-to-real_wf int_seg_wf rsum_wf subtract_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf intformless_wf itermAdd_wf itermSubtract_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_term_value_constant_lemma istype-le istype-less_than nat_properties ge_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf subtract-1-ge-0 istype-nat int_subtype_base add-associates minus-one-mul add-swap add-mul-special add-commutes zero-add zero-mul add-zero decidable__equal_int intformeq_wf int_formula_prop_eq_lemma add-subtract-cancel radd-zero-both req_functionality req_weakening rsum-single subtract-add-cancel rsum-split-last radd_functionality rsum-empty
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis unionElimination isectElimination lambdaEquality_alt inhabitedIsType universeIsType natural_numberEquality sqequalRule applyEquality dependent_set_memberEquality_alt setElimination rename productElimination imageElimination independent_pairFormation independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType because_Cache addEquality functionIsType isectIsTypeImplies lambdaFormation_alt intWeakElimination functionIsTypeImplies equalityElimination equalityTransitivity equalitySymmetry equalityIstype promote_hyp instantiate cumulativity intEquality multiplyEquality closedConclusion setIsType

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (\mPi{}(\mlambda{}x,y.  (x  +  y),r0)  n  \mleq{}  k  <  m.  x[k]  =  \mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m  -  1\})



Date html generated: 2019_10_29-AM-10_19_40
Last ObjectModification: 2019_09_19-AM-11_34_56

Theory : reals


Home Index