Nuprl Lemma : mdist-difference

[X:Type]. ∀[d:metric(X)]. ∀[x,a,b:X].  (|mdist(d;x;a) mdist(d;x;b)| ≤ mdist(d;a;b))


Proof




Definitions occuring in Statement :  mdist: mdist(d;x;y) metric: metric(X) rleq: x ≤ y rabs: |x| rsub: y uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cand: c∧ B rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B uimplies: supposing a uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rabs-difference-bound-rleq mdist_wf mdist-triangle-inequality1 le_witness_for_triv metric_wf istype-universe mdist-triangle-inequality rleq-implies-rleq rsub_wf radd_wf itermSubtract_wf itermAdd_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null int-to-real_wf istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis productElimination independent_functionElimination independent_pairFormation sqequalRule lambdaEquality_alt equalityTransitivity equalitySymmetry independent_isectElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate universeEquality natural_numberEquality because_Cache approximateComputation int_eqEquality voidElimination

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,a,b:X].    (|mdist(d;x;a)  -  mdist(d;x;b)|  \mleq{}  mdist(d;a;b))



Date html generated: 2019_10_29-AM-11_14_36
Last ObjectModification: 2019_10_02-AM-09_55_04

Theory : reals


Home Index