Nuprl Lemma : mdist-rn-metric-mul
∀[n:ℕ]. ∀[p:ℝ^n]. ∀[c:ℝ].  (mdist(rn-metric(n);c*p;λi.r0) = (|c| * mdist(rn-metric(n);p;λi.r0)))
Proof
Definitions occuring in Statement : 
rn-metric: rn-metric(n), 
real-vec-mul: a*X, 
real-vec: ℝ^n, 
mdist: mdist(d;x;y), 
rabs: |x|, 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
rn-metric: rn-metric(n), 
mdist: mdist(d;x;y), 
member: t ∈ T, 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
real_wf, 
real-vec_wf, 
istype-nat, 
real-vec-dist_wf, 
real-vec-mul_wf, 
int-to-real_wf, 
int_seg_wf, 
real-vec-norm_wf, 
rmul_wf, 
rabs_wf, 
real-vec-norm-mul, 
req_functionality, 
real-vec-dist-from-zero, 
rmul_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
lambdaEquality_alt, 
setElimination, 
rename, 
productElimination, 
natural_numberEquality, 
applyEquality, 
independent_isectElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}n].  \mforall{}[c:\mBbbR{}].    (mdist(rn-metric(n);c*p;\mlambda{}i.r0)  =  (|c|  *  mdist(rn-metric(n);p;\mlambda{}i.r0)))
 Date html generated: 
2019_10_30-AM-08_40_32
 Last ObjectModification: 
2019_10_02-AM-11_05_06
Theory : reals
Home
Index