Nuprl Lemma : msfun-ext-mfun
∀[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)].  (mcomplete(X with d) 
⇒ msfun(X;d;Y;d') ≡ FUN(X ⟶ Y))
Proof
Definitions occuring in Statement : 
mcomplete: mcomplete(M)
, 
msfun: msfun(X;d;Y;d')
, 
mfun: FUN(X ⟶ Y)
, 
mk-metric-space: X with d
, 
metric: metric(X)
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
msfun: msfun(X;d;Y;d')
, 
mfun: FUN(X ⟶ Y)
, 
is-mfun: f:FUN(X;Y)
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
guard: {T}
, 
is-msfun: is-msfun(X;d;Y;d';f)
Lemmas referenced : 
msfun_wf, 
mfun_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
metric_wf, 
istype-universe, 
meq_wf, 
is-mfun_wf, 
stable__meq, 
false_wf, 
msep_wf, 
not_wf, 
istype-void, 
not-msep, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
msep-not-meq, 
m-strong-extensionality, 
is-msfun_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
independent_pairFormation, 
lambdaEquality_alt, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
applyEquality, 
unionEquality, 
functionEquality, 
functionIsType, 
independent_functionElimination, 
unionIsType, 
because_Cache, 
independent_isectElimination, 
unionElimination, 
voidElimination
Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].
    (mcomplete(X  with  d)  {}\mRightarrow{}  msfun(X;d;Y;d')  \mequiv{}  FUN(X  {}\mrightarrow{}  Y))
Date html generated:
2019_10_30-AM-06_48_17
Last ObjectModification:
2019_10_02-AM-10_59_16
Theory : reals
Home
Index