Nuprl Lemma : r2-det-symmetry
∀[p,q,r:ℝ^2].  (|pqr| = |qrp|)
Proof
Definitions occuring in Statement : 
r2-det: |pqr|
, 
real-vec: ℝ^n
, 
req: x = y
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
r2-det: |pqr|
, 
all: ∀x:A. B[x]
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
top: Top
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
nat: ℕ
Lemmas referenced : 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
lelt_wf, 
int-to-real_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rsub_wf, 
radd_wf, 
rmul_wf, 
req_witness, 
r2-det_wf, 
real-vec_wf, 
false_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
sqequalRule, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
lambdaFormation, 
imageMemberEquality, 
baseClosed, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[p,q,r:\mBbbR{}\^{}2].    (|pqr|  =  |qrp|)
Date html generated:
2017_10_03-AM-11_41_41
Last ObjectModification:
2017_07_28-AM-08_29_05
Theory : reals
Home
Index