Nuprl Lemma : r2-det-syzygy-proof2

[p,q,r,u,v,w,x,y,z:ℝ^2].
  (((|pqw| |rpv| |qry| |prx| |quz|)
  (|rpv| |qru| |rpz| |qpy| |qwx|)
  (|qru| |pqw| |rpz| |prx| |qvy|)
  (|qru| |pqw| |rpz| |qpy| |rvx|)
  (|pqw| |rpv| |pqx| |rqz| |ruy|)
  (|rpv| |qru| |pqx| |qpy| |rwz|)
  (|rpv| |qru| |pqx| |rqz| |pwy|)
  (|qru| |pqw| |qry| |prx| |pvz|)
  (|pqw| |rpv| |qry| |rqz| |pux|))
  r0)


Proof




Definitions occuring in Statement :  r2-det: |pqr| real-vec: ^n req: y rmul: b radd: b int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  r2-det: |pqr| member: t ∈ T uall: [x:A]. B[x] real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: less_than: a < b squash: T true: True uiff: uiff(P;Q) uimplies: supposing a nat: all: x:A. B[x] req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  radd_wf rmul_wf rsub_wf lelt_wf int-to-real_wf itermSubtract_wf itermAdd_wf itermMultiply_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 r2-det_wf real-vec_wf false_wf le_wf req_witness real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality because_Cache dependent_set_memberEquality natural_numberEquality independent_pairFormation sqequalRule lambdaFormation hypothesis imageMemberEquality hypothesisEquality baseClosed productElimination independent_isectElimination isect_memberFormation independent_functionElimination isect_memberEquality dependent_functionElimination approximateComputation lambdaEquality int_eqEquality intEquality voidElimination voidEquality

Latex:
\mforall{}[p,q,r,u,v,w,x,y,z:\mBbbR{}\^{}2].
    (((|pqw|  *  |rpv|  *  |qry|  *  |prx|  *  |quz|)
    +  (|rpv|  *  |qru|  *  |rpz|  *  |qpy|  *  |qwx|)
    +  (|qru|  *  |pqw|  *  |rpz|  *  |prx|  *  |qvy|)
    +  (|qru|  *  |pqw|  *  |rpz|  *  |qpy|  *  |rvx|)
    +  (|pqw|  *  |rpv|  *  |pqx|  *  |rqz|  *  |ruy|)
    +  (|rpv|  *  |qru|  *  |pqx|  *  |qpy|  *  |rwz|)
    +  (|rpv|  *  |qru|  *  |pqx|  *  |rqz|  *  |pwy|)
    +  (|qru|  *  |pqw|  *  |qry|  *  |prx|  *  |pvz|)
    +  (|pqw|  *  |rpv|  *  |qry|  *  |rqz|  *  |pux|))
    =  r0)



Date html generated: 2017_10_03-AM-11_43_54
Last ObjectModification: 2017_06_01-PM-00_59_07

Theory : reals


Home Index