Nuprl Lemma : range_sup-const

I:{I:Interval| icompact(I)} . ∀[c:ℝ]. (sup{c x ∈ I} c)


Proof




Definitions occuring in Statement :  range_sup: sup{f[x] x ∈ I} icompact: icompact(I) interval: Interval req: y real: uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B rfun: I ⟶ℝ so_apply: x[s] prop: uimplies: supposing a top: Top istype: istype(T) ifun: ifun(f;I) real-fun: real-fun(f;a;b) implies:  Q sup: sup(A) b and: P ∧ Q icompact: icompact(I) sq_stable: SqStable(P) i-nonvoid: i-nonvoid(I) exists: x:A. B[x] squash: T upper-bound: A ≤ b rset-member: x ∈ A rrange: f[x](x∈I) cand: c∧ B
Lemmas referenced :  range_sup-bound istype-top subtype_rel_dep_function top_wf real_wf i-member_wf istype-void req_weakening req_wf rccint_wf left-endpoint_wf right-endpoint_wf ifun_wf rleq_weakening_equal range_sup-property rleq_antisymmetry req_witness range_sup_wf interval_wf icompact_wf sq_stable__rleq
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation_alt sqequalRule setElimination rename dependent_set_memberEquality_alt lambdaEquality_alt applyEquality isectElimination setEquality setIsType universeIsType independent_isectElimination isect_memberEquality_alt voidElimination because_Cache inhabitedIsType productElimination equalityTransitivity equalitySymmetry independent_functionElimination imageMemberEquality baseClosed imageElimination dependent_pairFormation_alt independent_pairFormation productIsType

Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}[c:\mBbbR{}].  (sup\{c  |  x  \mmember{}  I\}  =  c)



Date html generated: 2019_10_30-AM-07_44_43
Last ObjectModification: 2019_04_29-PM-10_55_09

Theory : reals


Home Index