Nuprl Lemma : range_sup-const
∀I:{I:Interval| icompact(I)} . ∀[c:ℝ]. (sup{c | x ∈ I} = c)
Proof
Definitions occuring in Statement : 
range_sup: sup{f[x] | x ∈ I}, 
icompact: icompact(I), 
interval: Interval, 
req: x = y, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
prop: ℙ, 
uimplies: b supposing a, 
top: Top, 
istype: istype(T), 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
implies: P ⇒ Q, 
sup: sup(A) = b, 
and: P ∧ Q, 
icompact: icompact(I), 
sq_stable: SqStable(P), 
i-nonvoid: i-nonvoid(I), 
exists: ∃x:A. B[x], 
squash: ↓T, 
upper-bound: A ≤ b, 
rset-member: x ∈ A, 
rrange: f[x](x∈I), 
cand: A c∧ B
Lemmas referenced : 
range_sup-bound, 
istype-top, 
subtype_rel_dep_function, 
top_wf, 
real_wf, 
i-member_wf, 
istype-void, 
req_weakening, 
req_wf, 
rccint_wf, 
left-endpoint_wf, 
right-endpoint_wf, 
ifun_wf, 
rleq_weakening_equal, 
range_sup-property, 
rleq_antisymmetry, 
req_witness, 
range_sup_wf, 
interval_wf, 
icompact_wf, 
sq_stable__rleq
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation_alt, 
sqequalRule, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
applyEquality, 
isectElimination, 
setEquality, 
setIsType, 
universeIsType, 
independent_isectElimination, 
isect_memberEquality_alt, 
voidElimination, 
because_Cache, 
inhabitedIsType, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
productIsType
Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}[c:\mBbbR{}].  (sup\{c  |  x  \mmember{}  I\}  =  c)
 Date html generated: 
2019_10_30-AM-07_44_43
 Last ObjectModification: 
2019_04_29-PM-10_55_09
Theory : reals
Home
Index