Nuprl Lemma : range_sup-const
∀I:{I:Interval| icompact(I)} . ∀[c:ℝ]. (sup{c | x ∈ I} = c)
Proof
Definitions occuring in Statement : 
range_sup: sup{f[x] | x ∈ I}
, 
icompact: icompact(I)
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
top: Top
, 
istype: istype(T)
, 
ifun: ifun(f;I)
, 
real-fun: real-fun(f;a;b)
, 
implies: P 
⇒ Q
, 
sup: sup(A) = b
, 
and: P ∧ Q
, 
icompact: icompact(I)
, 
sq_stable: SqStable(P)
, 
i-nonvoid: i-nonvoid(I)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
upper-bound: A ≤ b
, 
rset-member: x ∈ A
, 
rrange: f[x](x∈I)
, 
cand: A c∧ B
Lemmas referenced : 
range_sup-bound, 
istype-top, 
subtype_rel_dep_function, 
top_wf, 
real_wf, 
i-member_wf, 
istype-void, 
req_weakening, 
req_wf, 
rccint_wf, 
left-endpoint_wf, 
right-endpoint_wf, 
ifun_wf, 
rleq_weakening_equal, 
range_sup-property, 
rleq_antisymmetry, 
req_witness, 
range_sup_wf, 
interval_wf, 
icompact_wf, 
sq_stable__rleq
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation_alt, 
sqequalRule, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
applyEquality, 
isectElimination, 
setEquality, 
setIsType, 
universeIsType, 
independent_isectElimination, 
isect_memberEquality_alt, 
voidElimination, 
because_Cache, 
inhabitedIsType, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
productIsType
Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}[c:\mBbbR{}].  (sup\{c  |  x  \mmember{}  I\}  =  c)
Date html generated:
2019_10_30-AM-07_44_43
Last ObjectModification:
2019_04_29-PM-10_55_09
Theory : reals
Home
Index