Nuprl Lemma : rat2real-qmax
∀[a,b:ℚ]. (rat2real(qmax(a;b)) = rmax(rat2real(a);rat2real(b)))
Proof
Definitions occuring in Statement :
rat2real: rat2real(q)
,
rmax: rmax(x;y)
,
req: x = y
,
uall: ∀[x:A]. B[x]
,
qmax: qmax(x;y)
,
rationals: ℚ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
or: P ∨ Q
,
prop: ℙ
,
guard: {T}
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
cand: A c∧ B
,
and: P ∧ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
qle_connex,
qmax_ub,
qmax_lb,
qle_reflexivity,
rationals_wf,
req_witness,
rmax_wf,
req_fake_le_antisymmetry,
rleq-rat2real,
qle_wf,
rleq_wf,
iff_weakening_uiff,
rmax_lb,
qmax_wf,
rat2real_wf,
rmax_ub
Rules used in proof :
productIsType,
dependent_functionElimination,
unionElimination,
inrFormation_alt,
inlFormation_alt,
productEquality,
universeIsType,
isectIsTypeImplies,
isect_memberEquality_alt,
sqequalRule,
inhabitedIsType,
promote_hyp,
independent_functionElimination,
productElimination,
because_Cache,
independent_pairFormation,
independent_isectElimination,
hypothesis,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
cut,
introduction,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[a,b:\mBbbQ{}]. (rat2real(qmax(a;b)) = rmax(rat2real(a);rat2real(b)))
Date html generated:
2019_10_31-AM-05_57_51
Last ObjectModification:
2019_10_30-PM-06_54_48
Theory : reals
Home
Index