Nuprl Lemma : rational-upper-approx_wf
∀[x:ℕ+ ⟶ ℤ]. ∀[n:ℕ+].  (above x within 1/n ∈ ℝ)
Proof
Definitions occuring in Statement : 
rational-upper-approx: above x within 1/n
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rational-upper-approx: above x within 1/n
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
nat_plus_wf, 
mul_nat_plus, 
less_than_wf, 
int-rdiv_wf, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
int-to-real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
addEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
lambdaFormation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
baseApply, 
closedConclusion, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (above  x  within  1/n  \mmember{}  \mBbbR{})
Date html generated:
2017_01_09-AM-08_55_45
Last ObjectModification:
2016_11_26-PM-01_34_24
Theory : reals
Home
Index