Nuprl Lemma : real-vec-add-cancel

[n:ℕ]. ∀[p,a,b:ℝ^n].  req-vec(n;a;b) supposing req-vec(n;p a;p b)


Proof




Definitions occuring in Statement :  real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec-add: Y real-vec: ^n nat: implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  req-implies-req radd_wf int_seg_wf req_witness req-vec_wf real-vec-add_wf real-vec_wf nat_wf rsub_wf itermSubtract_wf itermAdd_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null int-to-real_wf real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation hypothesis dependent_functionElimination thin hypothesisEquality sqequalRule extract_by_obid isectElimination applyEquality because_Cache independent_isectElimination natural_numberEquality setElimination rename lambdaEquality independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry productElimination approximateComputation int_eqEquality intEquality voidElimination voidEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,a,b:\mBbbR{}\^{}n].    req-vec(n;a;b)  supposing  req-vec(n;p  +  a;p  +  b)



Date html generated: 2018_05_22-PM-02_25_10
Last ObjectModification: 2018_03_23-AM-10_57_09

Theory : reals


Home Index