Nuprl Lemma : real-vec-add-cancel
∀[n:ℕ]. ∀[p,a,b:ℝ^n].  req-vec(n;a;b) supposing req-vec(n;p + a;p + b)
Proof
Definitions occuring in Statement : 
real-vec-add: X + Y, 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
req-vec: req-vec(n;x;y), 
all: ∀x:A. B[x], 
real-vec-add: X + Y, 
real-vec: ℝ^n, 
nat: ℕ, 
implies: P ⇒ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top
Lemmas referenced : 
req-implies-req, 
radd_wf, 
int_seg_wf, 
req_witness, 
req-vec_wf, 
real-vec-add_wf, 
real-vec_wf, 
nat_wf, 
rsub_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
int-to-real_wf, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,a,b:\mBbbR{}\^{}n].    req-vec(n;a;b)  supposing  req-vec(n;p  +  a;p  +  b)
 Date html generated: 
2018_05_22-PM-02_25_10
 Last ObjectModification: 
2018_03_23-AM-10_57_09
Theory : reals
Home
Index