Nuprl Lemma : real-vec-sum_functionality

[n,m:ℤ]. ∀[k:ℕ]. ∀[x,y:{n..m 1-} ⟶ ℝ^k].
  req-vec(k;Σ{x[k] n≤k≤m};Σ{y[k] n≤k≤m}) supposing ∀i:ℤ((n ≤ i)  (i ≤ m)  req-vec(k;x[i];y[i]))


Proof




Definitions occuring in Statement :  real-vec-sum: Σ{x[k] n≤k≤m} req-vec: req-vec(n;x;y) real-vec: ^n int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec-sum: Σ{x[k] n≤k≤m} so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T pointwise-req: x[k] y[k] for k ∈ [n,m] implies:  Q nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: guard: {T}
Lemmas referenced :  rsum_functionality subtype_rel_self int_seg_wf real_wf istype-le req_witness real-vec-sum_wf req-vec_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma istype-less_than real-vec_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality_alt applyEquality hypothesis functionEquality setElimination rename productElimination imageElimination universeIsType addEquality natural_numberEquality because_Cache independent_isectElimination dependent_functionElimination independent_functionElimination functionIsTypeImplies inhabitedIsType functionIsType dependent_set_memberEquality_alt independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType isectIsTypeImplies

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}\^{}k].
    req-vec(k;\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\};\mSigma{}\{y[k]  |  n\mleq{}k\mleq{}m\}) 
    supposing  \mforall{}i:\mBbbZ{}.  ((n  \mleq{}  i)  {}\mRightarrow{}  (i  \mleq{}  m)  {}\mRightarrow{}  req-vec(k;x[i];y[i]))



Date html generated: 2019_10_30-AM-08_01_03
Last ObjectModification: 2019_09_17-PM-05_10_48

Theory : reals


Home Index