Nuprl Lemma : rpolynomial-rmul

[n:ℕ]. ∀[a:ℕ1 ⟶ ℝ]. ∀[x,b:ℝ].  (((Σi≤n. a_i x^i) b) i≤n. λi.((a i) b)_i x^i))


Proof




Definitions occuring in Statement :  rpolynomial: i≤n. a_i x^i) req: y rmul: b real: int_seg: {i..j-} nat: uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: pointwise-req: x[k] y[k] for k ∈ [n,m] all: x:A. B[x] so_apply: x[s] implies:  Q int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: guard: {T}
Lemmas referenced :  rmul-rpolynomial real_wf int_seg_wf istype-nat rmul_comm rpolynomial_wf rmul_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma istype-le istype-less_than req_weakening rpolynomial_functionality req_inversion req_transitivity
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality inhabitedIsType universeIsType functionIsType natural_numberEquality addEquality setElimination rename lambdaEquality_alt applyEquality because_Cache lambdaFormation_alt sqequalRule dependent_set_memberEquality_alt independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x,b:\mBbbR{}].    (((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  *  b)  =  (\mSigma{}i\mleq{}n.  \mlambda{}i.((a  i)  *  b)\_i  *  x\^{}i))



Date html generated: 2019_10_29-AM-10_13_18
Last ObjectModification: 2019_01_06-PM-01_38_44

Theory : reals


Home Index