Nuprl Lemma : rsqrt-rleq-iff
∀[x:{x:ℝ| r0 ≤ x} ]. ∀[c:ℝ].  uiff(rsqrt(x) ≤ c;(r0 ≤ c) ∧ (x ≤ c^2))
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rleq: x ≤ y
, 
rnexp: x^k1
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
guard: {T}
Lemmas referenced : 
le_witness_for_triv, 
rleq_wf, 
rsqrt_wf, 
int-to-real_wf, 
rnexp_wf, 
istype-void, 
istype-le, 
real_wf, 
rsqrt_nonneg, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rnexp_functionality_wrt_rleq, 
rmul_wf, 
rleq_functionality, 
req_weakening, 
rnexp2, 
rsqrt_squared, 
square-rleq-implies
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
applyEquality, 
setElimination, 
rename, 
productIsType, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
voidElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
setIsType, 
because_Cache, 
independent_functionElimination
Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  \mforall{}[c:\mBbbR{}].    uiff(rsqrt(x)  \mleq{}  c;(r0  \mleq{}  c)  \mwedge{}  (x  \mleq{}  c\^{}2))
Date html generated:
2019_10_30-AM-07_57_15
Last ObjectModification:
2019_06_25-PM-03_53_11
Theory : reals
Home
Index