Nuprl Lemma : rsqrt_square
∀[x:ℝ]. (rsqrt(x * x) = |x|)
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x), 
rabs: |x|, 
req: x = y, 
rmul: a * b, 
real: ℝ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rsqrt_wf, 
square-nonneg, 
rmul_wf, 
rleq_wf, 
int-to-real_wf, 
rabs_wf, 
real_wf, 
rmul_comm, 
rsqrt-of-square, 
zero-rleq-rabs, 
req_functionality, 
req_weakening, 
req_inversion, 
rabs-rmul, 
rabs-of-nonneg, 
rsqrt_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
independent_functionElimination, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[x:\mBbbR{}].  (rsqrt(x  *  x)  =  |x|)
 Date html generated: 
2017_10_03-AM-10_43_38
 Last ObjectModification: 
2017_08_27-PM-11_39_42
Theory : reals
Home
Index