Nuprl Lemma : rsqrt_square

[x:ℝ]. (rsqrt(x x) |x|)


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rabs: |x| req: y rmul: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: subtype_rel: A ⊆B implies:  Q uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rsqrt_wf square-nonneg rmul_wf rleq_wf int-to-real_wf rabs_wf real_wf rmul_comm rsqrt-of-square zero-rleq-rabs req_functionality req_weakening req_inversion rabs-rmul rabs-of-nonneg rsqrt_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality applyEquality because_Cache sqequalRule independent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}[x:\mBbbR{}].  (rsqrt(x  *  x)  =  |x|)



Date html generated: 2017_10_03-AM-10_43_38
Last ObjectModification: 2017_08_27-PM-11_39_42

Theory : reals


Home Index