Nuprl Lemma : rv-line-circle-1

n:ℕ. ∀a,b,p,q:ℝ^n.
  (a ≠ b
   p ≠ q
   (d(a;p) ≤ d(a;b))
   (d(a;b) ≤ d(a;q))
   (∃u:{u:ℝ^n| ab=au ∧ (q ≠ u ∧ u ≠ p ∧ q-u-p)))} 
       ∃v:{v:ℝ^n| ab=av ∧ (q ≠ p ∧ p ≠ v ∧ q-p-v)))} 
        ((d(a;p) < d(a;b))  (q-p-v ∧ ((d(a;b) < d(a;q))  q-u-p)))))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec-dist: d(x;y) real-vec: ^n rleq: x ≤ y rless: x < y nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] and: P ∧ Q cand: c∧ B sq_exists: x:A [B[x]] uall: [x:A]. B[x] prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T
Lemmas referenced :  rv-line-circle-0 rv-congruent_wf not_wf real-vec-sep_wf rv-between_wf rless_wf real-vec-dist_wf exists_wf real-vec_wf rleq_wf real_wf int-to-real_wf nat_wf sq_stable__all sq_stable__and sq_stable__rv-between
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination dependent_pairFormation sqequalRule setElimination rename dependent_set_memberEquality independent_pairFormation productEquality isectElimination functionEquality applyEquality because_Cache setEquality lambdaEquality natural_numberEquality isect_memberEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,p,q:\mBbbR{}\^{}n.
    (a  \mneq{}  b
    {}\mRightarrow{}  p  \mneq{}  q
    {}\mRightarrow{}  (d(a;p)  \mleq{}  d(a;b))
    {}\mRightarrow{}  (d(a;b)  \mleq{}  d(a;q))
    {}\mRightarrow{}  (\mexists{}u:\{u:\mBbbR{}\^{}n|  ab=au  \mwedge{}  (\mneg{}(q  \mneq{}  u  \mwedge{}  u  \mneq{}  p  \mwedge{}  (\mneg{}q-u-p)))\} 
              \mexists{}v:\{v:\mBbbR{}\^{}n|  ab=av  \mwedge{}  (\mneg{}(q  \mneq{}  p  \mwedge{}  p  \mneq{}  v  \mwedge{}  (\mneg{}q-p-v)))\} 
                ((d(a;p)  <  d(a;b))  {}\mRightarrow{}  (q-p-v  \mwedge{}  ((d(a;b)  <  d(a;q))  {}\mRightarrow{}  q-u-p)))))



Date html generated: 2018_05_22-PM-02_34_42
Last ObjectModification: 2018_03_27-AM-11_34_05

Theory : reals


Home Index