Nuprl Lemma : rv-line-circle-1
∀n:ℕ. ∀a,b,p,q:ℝ^n.
  (a ≠ b
  
⇒ p ≠ q
  
⇒ (d(a;p) ≤ d(a;b))
  
⇒ (d(a;b) ≤ d(a;q))
  
⇒ (∃u:{u:ℝ^n| ab=au ∧ (¬(q ≠ u ∧ u ≠ p ∧ (¬q-u-p)))} 
       ∃v:{v:ℝ^n| ab=av ∧ (¬(q ≠ p ∧ p ≠ v ∧ (¬q-p-v)))} 
        ((d(a;p) < d(a;b)) 
⇒ (q-p-v ∧ ((d(a;b) < d(a;q)) 
⇒ q-u-p)))))
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
rv-congruent: ab=cd
, 
real-vec-dist: d(x;y)
, 
real-vec: ℝ^n
, 
rleq: x ≤ y
, 
rless: x < y
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
sq_exists: ∃x:A [B[x]]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
rv-line-circle-0, 
rv-congruent_wf, 
not_wf, 
real-vec-sep_wf, 
rv-between_wf, 
rless_wf, 
real-vec-dist_wf, 
exists_wf, 
real-vec_wf, 
rleq_wf, 
real_wf, 
int-to-real_wf, 
nat_wf, 
sq_stable__all, 
sq_stable__and, 
sq_stable__rv-between
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
sqequalRule, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
productEquality, 
isectElimination, 
functionEquality, 
applyEquality, 
because_Cache, 
setEquality, 
lambdaEquality, 
natural_numberEquality, 
isect_memberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,p,q:\mBbbR{}\^{}n.
    (a  \mneq{}  b
    {}\mRightarrow{}  p  \mneq{}  q
    {}\mRightarrow{}  (d(a;p)  \mleq{}  d(a;b))
    {}\mRightarrow{}  (d(a;b)  \mleq{}  d(a;q))
    {}\mRightarrow{}  (\mexists{}u:\{u:\mBbbR{}\^{}n|  ab=au  \mwedge{}  (\mneg{}(q  \mneq{}  u  \mwedge{}  u  \mneq{}  p  \mwedge{}  (\mneg{}q-u-p)))\} 
              \mexists{}v:\{v:\mBbbR{}\^{}n|  ab=av  \mwedge{}  (\mneg{}(q  \mneq{}  p  \mwedge{}  p  \mneq{}  v  \mwedge{}  (\mneg{}q-p-v)))\} 
                ((d(a;p)  <  d(a;b))  {}\mRightarrow{}  (q-p-v  \mwedge{}  ((d(a;b)  <  d(a;q))  {}\mRightarrow{}  q-u-p)))))
Date html generated:
2018_05_22-PM-02_34_42
Last ObjectModification:
2018_03_27-AM-11_34_05
Theory : reals
Home
Index