Nuprl Lemma : Riemann-sum-rleq
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f,g:[a, b] ⟶ℝ]. ∀[k:ℕ+].
  Riemann-sum(f;a;b;k) ≤ Riemann-sum(g;a;b;k) supposing ∀x:ℝ. ((x ∈ [a, b]) ⇒ ((f x) ≤ (g x)))
Proof
Definitions occuring in Statement : 
Riemann-sum: Riemann-sum(f;a;b;k), 
rfun: I ⟶ℝ, 
rccint: [l, u], 
i-member: r ∈ I, 
rleq: x ≤ y, 
real: ℝ, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
Riemann-sum: Riemann-sum(f;a;b;k), 
let: let, 
squash: ↓T, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
real: ℝ, 
so_lambda: λ2x.t[x], 
rfun: I ⟶ℝ, 
so_apply: x[s]
Lemmas referenced : 
sq_stable__rleq, 
Riemann-sum_wf, 
rleq_wf, 
rccint-icompact, 
partition-sum-rleq, 
rccint_wf, 
uniform-partition_wf, 
default-partition-choice_wf, 
full-partition_wf, 
full-partition-non-dec, 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
all_wf, 
i-member_wf, 
rfun_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_set_memberEquality, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
sqequalRule, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality, 
independent_pairEquality, 
applyEquality, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f,g:[a,  b]  {}\mrightarrow{}\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].
    Riemann-sum(f;a;b;k)  \mleq{}  Riemann-sum(g;a;b;k)  supposing  \mforall{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  ((f  x)  \mleq{}  (g  x)))
 Date html generated: 
2016_10_26-PM-00_02_35
 Last ObjectModification: 
2016_09_12-PM-05_37_57
Theory : reals_2
Home
Index