Nuprl Lemma : arcsin-minus1
arcsin(r(-1)) = -(π/2)
Proof
Definitions occuring in Statement : 
arcsin: arcsin(a), 
halfpi: π/2, 
req: x = y, 
rminus: -(x), 
int-to-real: r(n), 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
uimplies: b supposing a, 
prop: ℙ, 
uiff: uiff(P;Q), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
top: Top, 
subtype_rel: A ⊆r B, 
req_int_terms: t1 ≡ t2, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rminus_wf, 
int-to-real_wf, 
rleq_weakening, 
rleq_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
rleq-int, 
istype-false, 
arcsin_wf, 
member_rccint_lemma, 
istype-void, 
rleq_weakening_equal, 
halfpi_wf, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_minus_lemma, 
rleq_functionality, 
req_weakening, 
req_functionality, 
rminus_functionality, 
req_inversion, 
arcsin1, 
arcsin-rminus, 
arcsin_functionality
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
minusEquality, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
sqequalRule, 
productIsType, 
universeIsType, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
applyEquality, 
approximateComputation, 
lambdaEquality_alt
Latex:
arcsin(r(-1))  =  -(\mpi{}/2)
Date html generated:
2019_10_31-AM-06_15_30
Last ObjectModification:
2019_05_24-PM-04_40_33
Theory : reals_2
Home
Index