Nuprl Lemma : trans-exchange

[C,D,E:SmallCategory]. ∀[F,G,H:Functor(C;D)]. ∀[I,J,K:Functor(D;E)]. ∀[tFG:nat-trans(C;D;F;G)].
[tGH:nat-trans(C;D;G;H)]. ∀[tIJ:nat-trans(D;E;I;J)]. ∀[tJK:nat-trans(D;E;J;K)].
  (trans-horizontal-comp(E;F;G;I;J;tFG;tIJ) trans-horizontal-comp(E;G;H;J;K;tGH;tJK)
  trans-horizontal-comp(E;F;H;I;K;tFG tGH;tIJ tJK)
  ∈ nat-trans(C;E;functor-comp(F;I);functor-comp(H;K)))


Proof




Definitions occuring in Statement :  trans-horizontal-comp: trans-horizontal-comp(E;F;G;J;K;tFG;tJK) functor-comp: functor-comp(F;G) trans-comp: t1 t2 nat-trans: nat-trans(C;D;F;G) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a trans-comp: t1 t2 trans-horizontal-comp: trans-horizontal-comp(E;F;G;J;K;tFG;tJK) all: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] functor-comp: functor-comp(F;G) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] nat-trans: nat-trans(C;D;F;G) true: True squash: T prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  nat-trans-equal2 functor-comp_wf trans-comp_wf trans-horizontal-comp_wf cat-ob_wf nat-trans_wf cat-functor_wf small-category_wf ap_mk_nat_trans_lemma ob_mk_functor_lemma cat-arrow_wf functor-ob_wf cat-comp_wf functor-arrow_wf equal_wf squash_wf true_wf nat-trans-equation cat-comp-assoc functor-arrow-comp nat-trans-assoc-equation nat-trans-comp-equation nat-trans-assoc-comp-equation iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination functionExtensionality because_Cache sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality applyEquality setElimination rename natural_numberEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[C,D,E:SmallCategory].  \mforall{}[F,G,H:Functor(C;D)].  \mforall{}[I,J,K:Functor(D;E)].  \mforall{}[tFG:nat-trans(C;D;F;G)].
\mforall{}[tGH:nat-trans(C;D;G;H)].  \mforall{}[tIJ:nat-trans(D;E;I;J)].  \mforall{}[tJK:nat-trans(D;E;J;K)].
    (trans-horizontal-comp(E;F;G;I;J;tFG;tIJ)  o  trans-horizontal-comp(E;G;H;J;K;tGH;tJK)
    =  trans-horizontal-comp(E;F;H;I;K;tFG  o  tGH;tIJ  o  tJK))



Date html generated: 2017_10_05-AM-00_48_04
Last ObjectModification: 2017_07_28-AM-09_19_56

Theory : small!categories


Home Index