Nuprl Lemma : nat-weak-overt

wOvert(ℕ)


Proof




Definitions occuring in Statement :  weak-overt: wOvert(X) nat:
Definitions unfolded in proof :  weak-overt: wOvert(X) uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] prop: Open: Open(X) so_lambda: λ2x.t[x] so_apply: x[s] in-open: x ∈ A all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False rev_implies:  Q
Lemmas referenced :  sp-lub_wf nat_wf Sierpinski_wf not_wf exists_wf equal-wf-T-base Open_wf sp-lub-is-top iff_wf all_wf in-open_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation universeEquality dependent_pairFormation lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule applyEquality functionExtensionality hypothesisEquality productEquality hypothesis cumulativity independent_pairEquality functionEquality lambdaFormation productElimination dependent_functionElimination voidElimination baseClosed axiomEquality independent_pairFormation because_Cache addLevel impliesFunctionality independent_functionElimination

Latex:
wOvert(\mBbbN{})



Date html generated: 2019_10_31-AM-07_19_20
Last ObjectModification: 2017_07_28-AM-09_12_27

Theory : synthetic!topology


Home Index