Nuprl Lemma : weak-overt-implies-overt

[X:Type]. (wOvert(X)  Overt(X))


Proof




Definitions occuring in Statement :  weak-overt: wOvert(X) overt: Overt(X) uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q weak-overt: wOvert(X) overt: Overt(X) member: t ∈ T exists: x:A. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q sp-le: x ≤ y Open: Open(X) prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] rev_implies:  Q in-open: x ∈ A not: ¬A false: False
Lemmas referenced :  equal-wf-T-base Sierpinski_wf all_wf sp-le_wf Open_wf iff_wf weak-overt_wf not_wf exists_wf not-Sierpinski-bottom Sierpinski-unequal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut hypothesis isectElimination thin hypothesisEquality productElimination dependent_pairFormation introduction sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality extract_by_obid applyEquality baseClosed because_Cache cumulativity functionExtensionality productEquality universeEquality independent_pairFormation functionEquality independent_functionElimination voidElimination equalitySymmetry equalityTransitivity

Latex:
\mforall{}[X:Type].  (wOvert(X)  {}\mRightarrow{}  Overt(X))



Date html generated: 2019_10_31-AM-07_19_17
Last ObjectModification: 2017_07_28-AM-09_12_25

Theory : synthetic!topology


Home Index