Nuprl Lemma : arith-example1

x,y,z:ℤ.
  ((((x 1) ≤ y) ∧ (y ≤ (x 1)))
   (((x 1) ≤ z) ∧ (z ≤ (x 1)))
   (((y 1) ≤ z) ∧ (z ≤ (y 1)))
   (((x y ∈ ℤ) ∨ (x z ∈ ℤ)) ∨ (y z ∈ ℤ)))


Proof




Definitions occuring in Statement :  le: A ≤ B all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B or: P ∨ Q le: A ≤ B uimplies: supposing a subtract: m top: Top uiff: uiff(P;Q) not: ¬A less_than': less_than'(a;b) true: True false: False iff: ⇐⇒ Q decidable: Dec(P) rev_implies:  Q guard: {T}
Lemmas referenced :  le_wf subtract_wf equal-wf-base int_subtype_base false_wf or_wf condition-implies-le add-associates minus-one-mul add-swap minus-one-mul-top add_functionality_wrt_le add-commutes le-add-cancel2 minus-add minus-minus le-add-cancel decidable__int_equal not-equal-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin productEquality cut introduction extract_by_obid isectElimination hypothesisEquality natural_numberEquality hypothesis addEquality intEquality applyEquality sqequalRule because_Cache unionElimination independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality minusEquality independent_functionElimination dependent_functionElimination inlFormation independent_pairFormation inrFormation addLevel orFunctionality

Latex:
\mforall{}x,y,z:\mBbbZ{}.
    ((((x  -  1)  \mleq{}  y)  \mwedge{}  (y  \mleq{}  (x  +  1)))
    {}\mRightarrow{}  (((x  -  1)  \mleq{}  z)  \mwedge{}  (z  \mleq{}  (x  +  1)))
    {}\mRightarrow{}  (((y  -  1)  \mleq{}  z)  \mwedge{}  (z  \mleq{}  (y  +  1)))
    {}\mRightarrow{}  (((x  =  y)  \mvee{}  (x  =  z))  \mvee{}  (y  =  z)))



Date html generated: 2017_04_14-AM-07_16_27
Last ObjectModification: 2017_02_27-PM-02_51_28

Theory : arithmetic


Home Index