Nuprl Lemma : div_bounds_4

[a:{...0}]. ∀[n:{...-1}].  (0 ≤ (a ÷ n))


Proof




Definitions occuring in Statement :  int_lower: {...i} uall: [x:A]. B[x] le: A ≤ B divide: n ÷ m minus: -n natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False int_lower: {...i} nequal: a ≠ b ∈  all: x:A. B[x] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a decidable: Dec(P) or: P ∨ Q prop: iff: ⇐⇒ Q rev_implies:  Q guard: {T} subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  div_bounds_3 less_than'_wf not-equal-2 decidable__le le_wf false_wf not-le-2 condition-implies-le add-associates add-commutes add-swap zero-add minus-add minus-zero add_functionality_wrt_le le-add-cancel or_wf int_lower_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination because_Cache divideEquality setElimination rename natural_numberEquality independent_isectElimination addEquality unionElimination inlFormation independent_pairFormation lambdaFormation voidElimination inrFormation applyEquality isect_memberEquality voidEquality intEquality minusEquality independent_functionElimination addLevel orFunctionality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a:\{...0\}].  \mforall{}[n:\{...-1\}].    (0  \mleq{}  (a  \mdiv{}  n))



Date html generated: 2016_05_13-PM-03_35_18
Last ObjectModification: 2015_12_26-AM-09_43_19

Theory : arithmetic


Home Index