Nuprl Lemma : div_bounds_4
∀[a:{...0}]. ∀[n:{...-1}]. (0 ≤ (a ÷ n))
Proof
Definitions occuring in Statement :
int_lower: {...i}
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
divide: n ÷ m
,
minus: -n
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
le: A ≤ B
,
and: P ∧ Q
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
int_lower: {...i}
,
nequal: a ≠ b ∈ T
,
all: ∀x:A. B[x]
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
uimplies: b supposing a
,
decidable: Dec(P)
,
or: P ∨ Q
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
guard: {T}
,
subtract: n - m
,
subtype_rel: A ⊆r B
,
top: Top
,
less_than': less_than'(a;b)
,
true: True
Lemmas referenced :
div_bounds_3,
less_than'_wf,
not-equal-2,
decidable__le,
le_wf,
false_wf,
not-le-2,
condition-implies-le,
add-associates,
add-commutes,
add-swap,
zero-add,
minus-add,
minus-zero,
add_functionality_wrt_le,
le-add-cancel,
or_wf,
int_lower_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
sqequalRule,
productElimination,
independent_pairEquality,
lambdaEquality,
dependent_functionElimination,
because_Cache,
divideEquality,
setElimination,
rename,
natural_numberEquality,
independent_isectElimination,
addEquality,
unionElimination,
inlFormation,
independent_pairFormation,
lambdaFormation,
voidElimination,
inrFormation,
applyEquality,
isect_memberEquality,
voidEquality,
intEquality,
minusEquality,
independent_functionElimination,
addLevel,
orFunctionality,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[a:\{...0\}]. \mforall{}[n:\{...-1\}]. (0 \mleq{} (a \mdiv{} n))
Date html generated:
2016_05_13-PM-03_35_18
Last ObjectModification:
2015_12_26-AM-09_43_19
Theory : arithmetic
Home
Index