Nuprl Lemma : div_bounds_4
∀[a:{...0}]. ∀[n:{...-1}].  (0 ≤ (a ÷ n))
Proof
Definitions occuring in Statement : 
int_lower: {...i}
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
divide: n ÷ m
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
int_lower: {...i}
, 
nequal: a ≠ b ∈ T 
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
div_bounds_3, 
less_than'_wf, 
not-equal-2, 
decidable__le, 
le_wf, 
false_wf, 
not-le-2, 
condition-implies-le, 
add-associates, 
add-commutes, 
add-swap, 
zero-add, 
minus-add, 
minus-zero, 
add_functionality_wrt_le, 
le-add-cancel, 
or_wf, 
int_lower_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
divideEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_isectElimination, 
addEquality, 
unionElimination, 
inlFormation, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
inrFormation, 
applyEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
independent_functionElimination, 
addLevel, 
orFunctionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a:\{...0\}].  \mforall{}[n:\{...-1\}].    (0  \mleq{}  (a  \mdiv{}  n))
Date html generated:
2016_05_13-PM-03_35_18
Last ObjectModification:
2015_12_26-AM-09_43_19
Theory : arithmetic
Home
Index